Joint Board of Supervisors & School Board Committee

March 18, 2016
4:00 p.m.
Loudoun County Government
1 Harrison Street, S.E.
Leesburg, Virginia 20175
Boardroom

AGENDA

Call to Order: 4:00 p.m.

Public Input

Old Business:

1. Approval of September 10, 2015 Meeting Minutes (Action Item) (5 minutes)
 Contact: Robert Middaugh, Loudoun County Government

2. Co-Chair Reports on Board of Supervisors and School Board Activities (Information Item) (20 minutes)
 No item in packet
 Contacts: Co-Chairs Joy Maloney and Geary Higgins

3. Turf Fields Update (Information Item) (45 minutes)
 Contacts: Robert Middaugh and Dr. David Goodfriend, Loudoun County Government
 Kevin Lewis, Loudoun County Public Schools

New Business:

4. Academies of Loudoun (AOL) Update and Discussion (Information)
 No item in packet
 Contacts: Dr. Michael Richards, Chief of Staff, and Cindy Ambrose, Assistant Superintendent for Instruction, Loudoun County Public Schools

5. Loudoun County Public Schools and Loudoun County Government Budget Update (Information) (30 minutes)
 No item in packet
 Staff Contacts: Dr. Eric Williams, Superintendent - Loudoun County Public Schools
 Tim Hemstreet, County Administrator - Loudoun County Government

6. Joint Board of Supervisors and School Board Committee 2016 Goals Discussion (Information Item) (30 minutes)
 Contacts: Co-Chairs Joy Maloney and Geary Higgins

7. 2016 Joint Board of Supervisors and School Board Committee Schedule (Action Item) (5 minutes)
 Staff Contact: Co-Chairs Joy Maloney and Geary Higgins

Adjournment
If you require a reasonable accommodation for any type of disability in order to participate in the Joint Board of Supervisors & School Board Committee, please contact the Office of the County Administrator at 703-777-0200/TTY-711. At least one business day of advance notice is requested; some accommodations may require more than one day of notice. FM Assistive Listening System is available at the meeting.

<table>
<thead>
<tr>
<th>Committee Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loudoun County Board of Supervisors</td>
</tr>
<tr>
<td>Geary M. Higgins, Co-Chair</td>
</tr>
<tr>
<td>Phyllis Randall</td>
</tr>
<tr>
<td>Ralph Buona</td>
</tr>
<tr>
<td>Loudoun County School Board</td>
</tr>
<tr>
<td>Joy Maloney, Co-Chair</td>
</tr>
<tr>
<td>Eric DeKenipp</td>
</tr>
<tr>
<td>Jeff Morse</td>
</tr>
</tbody>
</table>
Joint Board of Supervisors & School Board Committee

March 18, 2016
4:00 p.m.
Loudoun County Government
1 Harrison Street, S.E.
Leesburg, Virginia 20175
Boardroom

AGENDA SUMMARY

Call to Order: 4:00 p.m.

Public Input

Old Business:

1. Approval of September 10, 2015 Meeting Minutes (Action Item) (5 minutes)
 Contact: Robert Middaugh, Loudoun County Government

2. Co-Chair Reports on Board of Supervisors and School Board Activities (Information Item) (20 minutes)
 The Co-Chairs of the Joint Board of Supervisors and School Board Committee (Joint Committee) will provide a verbal update on the current work activities of the Loudoun School Board and Loudoun County Board of Supervisors.
 Contacts: Co-Chairs Joy Maloney and Geary Higgins

3. Turf Fields Update (Information Item) (45 minutes)
 Loudoun County Public Schools and Loudoun County Government staff will be present to provide an update on the safety of synthetic turf fields and any viable alternatives for infill material for those fields.
 Contacts: Robert Middaugh and Dr. David Goodfriend, Loudoun County Government
 Kevin Lewis, Loudoun County Public Schools

New Business:

4. Academies of Loudoun (AOL) Update and Discussion (Information)
 Loudoun County Public Schools staff will provide an update on the Academies of Loudoun.
 Contacts: Dr. Michael Richards, Chief of Staff, and Cindy Ambrose, Assistant Superintendent for Instruction, Loudoun County Public Schools

5. Loudoun County Public Schools and Loudoun County Government Budget Update (Information) (30 minutes)
 There will be updates on Loudoun County Public Schools and Loudoun County Government’s on-going budget processes.
 Staff Contacts: Dr. Eric Williams, Superintendent - Loudoun County Public Schools
 Tim Hemstreet, County Administrator - Loudoun County Government
6. **Joint Board of Supervisors and School Board Committee 2016 Goals Discussion**
 (Information Item) (30 minutes)
 The Joint Committee will discuss goals or subjects that may be of interest for the Committee to review in future meetings. A number of potential topics were identified at the March 18, 2016 Loudoun County Government Budget Worksession.
 Contacts: Co-Chairs Joy Maloney and Geary Higgins

7. **2016 Joint Board of Supervisors and School Board Committee Schedule (Action Item)**
 (5 minutes)
 The Joint Committee will determine their Schedule for 2016.
 Staff Contact: Co-Chairs Joy Maloney and Geary Higgins

Adjournment

If you require a reasonable accommodation for any type of disability in order to participate in the Joint Board of Supervisors & School Board Committee, please contact the Office of the County Administrator at 703-777-0200/TTY-711. At least one business day of advance notice is requested; some accommodations may require more than one day of notice. FM Assistive Listening System is available at the meeting.

Committee Members

<table>
<thead>
<tr>
<th>Loudoun County Board of Supervisors</th>
<th>Loudoun County School Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geary M. Higgins, Co-Chair</td>
<td>Joy Maloney, Co-Chair</td>
</tr>
<tr>
<td>Phyllis Randall</td>
<td>Eric DeKenipp</td>
</tr>
<tr>
<td>Ralph Buona</td>
<td>Jeff Morse</td>
</tr>
</tbody>
</table>
BOARD OF SUPERVISORS
JOINT BOARD OF SUPERVISORS & SCHOOL BOARD COMMITTEE
ACTION ITEM

SUBJECT: Approval of September 10, 2015 Meeting Minutes

ELECTION DISTRICT: Countywide

CRITICAL ACTION DATE: At the pleasure of the Committee

STAFF CONTACT: Robert Middaugh, Assistant County Administrator

BACKGROUND: The Joint Board of Supervisors and School Board Committee will review and adopt the draft minutes of its September 10, 2015 meeting.

DRAFT MOTION:

1. I move that the Joint Board of Supervisors and School Board Committee approve the minutes from its September 10, 2015 meeting, as shown in this item.

OR

2. I move an alternate motion.

ATTACHMENT:
September 10, 2015 Joint Board of Supervisors and School Board Committee Draft Meeting Minutes
1. **CALL TO ORDER**

Co-Chair Higgins called the Joint Board of Supervisors and School Board Committee to order at 4:07 p.m.

2. **PUBLIC INPUT**

None

3. **OLD BUSINESS**

1. **Approval of the June 5, 2015, Minutes:**

Mr. Buona moved that the Joint Board of Supervisors and School Board Committee approve the June 5, 2015 meeting minutes. Seconded by Mr. Hornberger. The motion passed 4-0-2 with Mr. Reid and Mr. Kuesters absent for the vote.

Attachment
2. **Co-Chairs Report on Board of Supervisors and School Board Activities:**

Co-Chair Higgins congratulated Loudoun County Public Schools (Schools) on the start of the school year and the opening of Riverside High School. He added the Board of Supervisors (Board) are working on the Silver Line, Comprehensive Plan Amendment approval for the consent permit for the Academy of Sciences and the approval of a Senate package for the Children’s Science Center of Loudoun. He further stated that the Board received preliminary budget guidance at the September 8, 2015, Finance/Government Operations and Services Committee (FGSO) and that the Board asked Mr. Hemstreet to come up with budgets at the current and equalized rates.

Co-Chair Morse stated that the school year started smoothly with 77,000 students and that a work session on full-day kindergarten is scheduled on September 15th. He added that the Schools’ superintendent will be presenting at the September 18 State of Education Breakfast; the Loudoun Education Golf Tournament occurs on September 21; September 27th is the Annual College Fair Day; and on October 5th Riverside High School’s dedication ceremony occurs. Mr. Morse further added that School boundary discussions start on October 28; schools that will be affected include Madison’s Trust Elementary, Ashburn, Cedar Lane, Creighton’s Corner, Discovery, Dominion Trail, Evergreen Mill, Legacy, Mill Run, Moorefield Station, Rosa Lee Carter, Sanders Corner, Steuart W. Weller, and Sycolin Creek elementary. He added that he hoped that when the BOS sets their maximum budget cap, that there is flexibility built into it for the Schools. Two new turf fields at Stonebridge and Park View opened. Ribbon cutting ceremonies (date not yet known) are planned for the new playgrounds at Moorefield Station and Cardinal Ridge. SATs, SOLs and ACT test scores look positive. There is a $151M bond referendum for overcrowding relief at John Champe, Briar Ridge and Rock Ridge high schools and for a new elementary school to relieve overcrowding in the Moorefield Station area.

3. **Update on the Town of Leesburg’s Proposal to Site a Skate Park on School Division Property**

Kevin Lewis, Assistant Superintendent of Support Services, stated that School staff, through their Finance and Facilities Committee, recommended that the Town of Leesburg (Town) provide information on their proposal to move the Skate Park to Douglass School including the current and future use of the Douglass School building’s security, parking, and maintenance and operations responsibilities. The Schools are not prepared to take action at this time. Mr. Buona addressed the liability issue and asked if Leesburg would indemnify the County. Mr. Hornberger noted it would not be wise at this time to locate the Skate Park at the Douglass School since the CIP does not note an alternate location for that School. Mr. Rich Williams, the Town’s Parks and Recreation Director, stated that the Town is voting on the location of Skate Park at its September 22nd meeting.
IV. NEW BUSINESS

4.a. Loudoun County Government Fiscal Outlook:

Erin McLellan presented the County’s fiscal outlook. Included in that presentation were discussions on the County’s economic outlook, property taxes, fund balance, debt service and the tax rate. Erin will forward Mr. Morse the breakdown of prior year fund balance which was used to buy down the debt. Mr. Higgins asked what the average selling price of a house was. Mr. Buona stated that, according to the Dulles Area Association of Realtors (DAAR), the median Loudoun County house sale price in July 2015 was $428,005. The average sale price for an attached home was $300,060 and a detached home was $575,000.

4.b. Loudoun County Public Schools Fiscal Outlook and Fleet Management Plan:

Dr. Williams presented a budget update for the Schools. He addressed the Schools’ mission and strategic goals and the budget development process. Ms. Leigh Burden, Assistant Superintendent of Business and Financial Services, discussed enrollment projections, the number of new schools, employee compensation and benefits, and preliminary expenditures revenue.

Kevin Lewis reported on the Schools’ fleet management plan which included a replacement strategy. Buses are replaced according to their mileage statistics.

5. Loudoun County Public Schools Organizational Charts:

Kimberly Hough, Assistant Superintendent for Personnel Services, presented the Schools’ organizational charts. These charts will be published on the Schools’ website. Names will not be noted on the organizational charts due to frequent changes caused by attrition and hiring. The Schools’ directory does list individual names and titles.

6. Riverside High School Status:

Kevin Lewis discussed the successful opening of Riverside High School despite numerous challenges. He thanked everyone for their help and recognized the following staff for their efforts in the School’s opening: County -- Tim Hemstreet, Ricky Barker, Jacob Hambrick, Danielle Frye, Gary Gillispie, Glenn Johnson, Daniel Nick, Kevin Palmer, Wally Rinaldi, Mike Seigfried, and Chuck Wolfrey; from the Schools -- Gary Van Alstyne, David Helmki, Roy Grandstaff, Tony McGraw and Marty Rinehart.

ADJOURNMENT

Co-Chair Higgins made a motion to adjourn the meeting. Mr. Buona moved the motion and Mr. Kuesters seconded. The meeting was adjourned the meeting at 5:40 p.m.
SUBJECT: Turf Fields Update

ELECTION DISTRICT: Countywide

STAFF CONTACTS: Robert Middaugh, Assistant County Administrator
Kevin Lewis, Assistant Superintendent for Support Services
Dr. David Goodfriend, Director Loudoun County Health Department

PURPOSE: To provide an update on Loudoun County Public Schools and Loudoun County Government’s research on the safety of synthetic turf fields and any viable alternatives for infill material for those fields.

BACKGROUND: At the June 4, 2015, Joint Board of Supervisors and School Board Committee, School staff provided an update on the synthetic turf fields in the School system. Concerns about potential health effects of recycled rubber granules (crumb rubber) in synthetic turf fields were briefly discussed. The Committee requested staff to continue to monitor the investigations on the synthetic turf fields and further asked staff to look at potential infill alternatives and report back to the Joint Committee at a future meeting.

Since the June 4, 2015 Joint Board of Supervisors and School Board Committee meeting, County and School staff have reviewed available information and research on the health effects associated with use of crumb rubber in turf fields as infill material, as well as potential alternatives to crumb rubber. Staff will present the information at the March 18, 2015 committee meeting. Included as attachments for this item are an overview of research on the health effects of use of crumb rubber for synthetic turf fields (Attachment 1), materials illustrating how a synthetic turf field is constructed (Attachment 2), the 2009 cost-benefit analysis performed by the School Division on the use of synthetic turf fields versus grass fields updated to 2016 (Attachment 3) and a study of the available infill material alternatives to crumb rubber by the Bowman Engineering Group (Attachment 4).

At the meeting, Dr. David Goodfriend will discuss his evaluation of the available information on the health effects associated with use of crumb rubber as an infill material on synthetic turf fields. Dr. Goodfriend’s review of studies on the use of crumb rubber for synthetic turf fields has not yielded a definitive study that links the use of crumb rubber on synthetic turf fields with an
increased incidence of cancer. Dr. Goodfriend will also discuss studies currently underway on this topic. Attachment 1 is the summary of Dr. Goodfriend’s findings.

The attached 2009 and 2016 cost-benefit analyses (Attachment 3) on the use of synthetic turf fields versus grass fields is intended to show how the original decision to use synthetic turf was reached. The attached materials indicate that the costs associated with maintaining grass fields versus synthetic turf fields is comparable over time. What the cost-benefit analysis does not reflect and what ultimately was a major consideration in the determination to use synthetic turf fields, is the significant amount of additional time that synthetic turf fields can be used versus grass fields.

In the attached Bowman study (Attachment 4), the projected costs of utilizing crumb rubber versus other available alternatives for infill material are presented. Crumb rubber is the least expensive of the viable options, however, there are several options available at greater expense that might be used for infill material for synthetic turf fields. Of the alternatives presented, the use of organic infill materials and sand is not recommended for either School or County use. Each of these materials has a variety of issues associated with it that make them unsuitable for School or County use. Of alternatives that might be utilized in lieu of crumb rubber, the two most promising alternatives are Ethylene Propylene Diene Monomer rubber (EPDM) and Thermoplastic Elastomer (TPE). Unfortunately, to this point in time most of the scientific analysis of synthetic turf infill materials has been devoted to the use of crumb rubber, largely because of concerns expressed about potential carcinogenic effects. While there are synthetic turf installations across the United States that have used either EPDM or TPE, there is not a great deal of scientific analysis of any potential impacts associated with the use of these materials.

In terms of the timing for any decisions on the design parameters for synthetic turf fields, the next field that is to be built is Potomac Falls High School. At this point in time the School Division is in the process of soliciting bids for the construction of a synthetic turf field at this High School. Funds for this turf field were appropriated by the Board of Supervisors in December 2015 as a part of an allocation of funds from the unspent County fund balance. The construction schedule associated with a school synthetic turf field is much more constrained than for a County facility in that school fields need to be constructed in a small window of time over the summer months, so as not to be disruptive to school activities. The School’s current construction schedule would have the Potomac Falls High School turf field constructed and ready for use by the fall of 2016.

The next set of turf fields that would be pursued are those that are projected to be constructed at the Hal and Bernie Hansen Park. Design funds are available in the current fiscal year and construction funds are currently identified in 2017 in the County capital improvement program (CIP). At the March 8, 2016 Finance and Government Operations and Economic Development Committee meeting, the Committee made a unanimous recommendation to the full Board of Supervisors that among other alterations to the CIP, that the Hal and Bernie Hansen Park construction funding be moved to 2018.

For next steps, the County and School staff will present this research to their respective elected bodies for their consideration and discussion. As each elected body considers this topic,
direction can be provided to the respective staff on this issue. The County and School staffs plan to continue to collaborate on the synthetic turf field issue.

ATTACHMENTS

1. Memo from Dr. David Goodfriend to County Administration, Interim Evaluation of Health Concerns Related to Crumb Rubber Infill Synthetic Turf Fields
2. Illustrations on synthetic turf field construction
3. Memo from Gary Van Alstyne to Kevin Lewis Regarding Synthetic Turf Update (includes 2009 cost benefit analysis on synthetic turf versus grass fields updated to 2016)
4. LCPS Synthetic Turf Alternative Infill Analysis Summary Reported by Bowman Consulting
DATE: February 9, 2016

TO: County Administration

FROM: David Goodfriend, Director, Health Department

SUBJECT: Interim Evaluation of Health Concerns Related to Crumb Rubber Infill Artificial Turf Fields

Crumb rubber infill has been used to create artificial playing surfaces in the Northern Virginia (NOVA) region since the early 2000s, with an increasing number of such fields in use each year. The safety of crumb rubber has been examined in the United States by individual state and federal partners since 2007. The concern about a possible causative link between crumb rubber playing surfaces and cancer has increased with recent media reports. For example, KOMO TV news in Seattle filed a report on May 17, 2014 (komonews.com/news/local/soccer-coach-could-artificial-turf-be-causing-cancer-11-21-2015), which was broadcast nationwide by NBC news in October, 2014 (www.nbcnews.com/news/investigations/how-safe-artificial-turf-your-child-plays-n220166). A premise of these reports is that a soccer coach at the University of Washington became concerned that soccer players in her area, and goalies in particular, were developing cancer at a high rate and speculated that this was due to the crumb rubber infill on the artificial turf fields.

In response to these health concerns, the Loudoun County Government, Loudoun County Public School system and the Loudoun County Health Department began meeting to see how best to ensure the health of its students and others utilizing private and public artificial turf fields in Loudoun County. For the Health Department, this included a commitment to try to determine if health effects similar to what was reported in Washington State may be occurring in Virginia, if those Washington State health concerns could be verified, and whether any other state or national studies looking at the health effects of crumb rubber infill turf fields exist. I appreciate being able to provide an update of what we have found so far.

The Virginia Department of Health maintains the Virginia Cancer Registry (VCR), which is a population-based disease surveillance program. The Code of Virginia charges the registry to collect reports on all cancers that occur among Virginia residents and registry staff use the cancer data to perform statistical analyses and to provide information. VCR studied the time periods 2002 - 2006 (before crumb was used in NOVA) and 2007 – 2012 (after the introduction of crumb rubber fields in NOVA) for the age groups (in years) 0 – 9, 10 – 19, 0 – 19, and 20 – 29 in NOVA, Virginia overall, and the United States for the cancers raised as concerns in Washington State (malignant brain and central nervous system cancers, leukemia, and lymphoma). VCR found that cancer rates – between these time periods, within these age groups, and across the three regions – were similar. Specifically, there were no changes in rates of blood cancers (leukemia, Hodgkin’s lymphoma, and Non-Hodgkin’s lymphoma) in the age groups studied from the first to the second time periods and there was no evidence of increased cancer incidence in NOVA compared to Virginia and to the US.

VDH VIRGINIA DEPARTMENT OF HEALTH
Protecting You and Your Environment

ATTACHMENT 1
Washington State is currently conducting a cancer cluster investigation of the cases related to the initial stories of the University of Washington (UW) coach’s concerns. According to the Washington State Department of Health’s website, “A public health risk appears unlikely based on the available research and data we have reviewed. Measurements of the chemicals released from crumb rubber have been used to evaluate the risk of exposure from eating, breathing and skin contact with these chemicals.” The site also states that “We are working with UW’s School of Public Health to review Coach Griffin’s information and verify the information using the Washington State Cancer Registry. We want to know if there is an increased rate of selected cancers among soccer players, especially goalies compared to what we would expect based on Washington state rates.”

(www.doh.wa.gov/CommunityandEnvironment/Schools/EnvironmentalHealth/syntheticTurf) It is expected that results of this evaluation will be available during the spring of 2016.

Lastly, the United States Environmental Protection Agency (EPA) is working with states, such as California, who are looking at the safety of crumb rubber infill turf fields. According to the EPA website at www.epa.gov/chemical-research/use-recycled-tire-materials-playgrounds-artificial-turf-fields, “EPA and other federal agencies are working with the California’s Office of Environmental Health Hazard Assessment (OEHHA) to provide their expertise for a comprehensive evaluation of tire crumbs. This evaluation is being designed to provide information needed to make more informed decisions about the safety of crumb rubber.” OEHHA maintains a website of previous and ongoing studies at http://oehha.ca.gov/risk/SyntheticTurfStudies.html; it is expected that the results of this new study will not be available until 2018.

In summary, we have been working to obtain the best health information on crumb rubber infill artificial turf fields to keep our residents safe. The Virginia Cancer Registry data did not support a concern of significant increases in childhood cancers since the introduction of artificial turf fields. Additionally, we hope to have results this spring from the investigation of the original Washington State cancer concerns to better evaluate the validity of their initial health concerns.

While the published studies to date have not linked playing soccer on crumb rubber infill artificial turf fields to cancer, there continue to be limitations in our knowledge of health effects of these artificial turf fields. For example, while the Virginia Cancer Registry data is reassuring, it did not analyze exposure to crumb rubber as an independent variable. Additionally, it will be several years for the results of California’s more definitive study to be available.

Please let me know if I can provide you any additional information.
Profile of typical synthetic turf field
Gravel Base
Topdressed Fine Grit
Rolled
Connecting Seams
Infill Material – Crumb Rubber
Infill Material - TPE
Topdressed Infill Material
Infield Material Broomed into Carpet
Loudoun County Public School Project Photos
Loudoun Valley HS
Rock Ridge HS
Tuscarora HS
Final Product – Loudoun Valley HS
TO: Kevin Lewis, PE
 Assistant Superintendent, Support Services

FROM: Gary P. Van Alstyne, PE
 Director of Construction

DATE: March 9, 2016

SUBJECT: Synthetic Turf Update to June 8, 2009 Memo

Based on Loudoun County Public Schools (LCPS) experience over the last 5 years in the installation of synthetic turf playfields, this memo serves as an update to a memo from yourself to Jeff Platenburg dated June 8, 2009, as attached.

The Divisions of Instruction (DI), Construction Services (DCS) and Facilities Services (DFS) have consulted internally, with staff, vendors, contractors and consulting engineers to evaluate the cost benefit of incorporating synthetic turf for high school athletic facilities. The attached five (5) Exhibits are based on the costs incurred for design, construction, operations and maintenance of the existing LCPS synthetic fields. Costs for alternative synthetic turf infill materials (other than Crumb Rubber) are used as well. Refer to Exhibit 1 for a Cost Summary.

LCPS student athletic activities benefit with respect to competition and practice in the following prioritization: Stadium Competition field, Athletic practice field, and potentially Competition baseball/softball. DCS has evaluated initial costs, life cycle costs, maintenance costs, irrigation costs and resources for SBR Crumb Rubber infill as well as Alternative Infill materials and natural grass turf.

Based on the past stadium field renovations from natural grass to synthetic turf, the base budget of replacing the turf, required drainage and replacing the track and perimeter fencing is $1,900,000, including design both and construction costs. If only the turf field replacement is considered (no track, fencing, D-Ring reconstruction, ball stopper netting or off-site drainage, etc.), the budget is approximately $1,100,000. Refer to Exhibits 2 and 3.

It is anticipated that the additional costs to install an alternate infill material in a stadium field could range from $150,000 to over $450,000 depending on the features chosen. This represents as much as 40% increase in first costs for installation and the first year of maintenance. Additional competition fields will resemble the premium percentage proportionally. Cost estimates for retrofit of an existing stadium have been found to be in the range of $1,900,000 depending on the modifications required to existing infrastructure.

The average approximate cost of annual maintenance and irrigation is $66,300 for natural turf in contrast to less than $5,000 for certain synthetic installations. When combined with the increased utilization rate resulting from the added durability, the costs per athletic event is drastically less for the synthetic surface. A synthetic turf field represents a savings of about 25,000 gallons of water per week during watering season for a single competition field. Refer to Exhibit 4 for a Total Cost of different turf systems through a 24 year life.

The attached life cycle analysis in Exhibit 5 has been prepared by our office based on record data, historical costs and best available information. The graph is a reflection of actual and projected

ATTACHMENT 3
costs out to a 30 year period (note that escalation is not considered). The life cycles of the natural and synthetic turf systems vary substantially. The natural turf is recommended to be replaced after every 2-3 years of use at a cost in today's dollars of $90,000. The life expectancy of the grass carpet on a synthetic field ranges from 11-15 years, with some infill materials being required to be replaced more frequently. Given consideration of initial costs, maintenance costs, and increased utilization, synthetic turf systems on competition fields for the high school stadium appear to be more cost effective than natural grass fields over the long term. Noted in Exhibit 5, the total cost of a grass field and a crumb rubber infill field are nearly the same at Year 11. After Year 16, the natural turf field continues to have a higher total cost than a crumb rubber system and some other synthetic turf systems.

It should be noted that DCS has not considered nor does it endorse synthetic turf fields in terms of athletic performance, injuries or environmental health.

The Division of Construction Services is currently preparing plans to go out for bid in the 3rd week of March 2016 for Potomac Falls HS stadium turf renovation; and alternate pricing has been requested for Coated Sand, TPE and EPDM alternate infill materials. Upon receipt of those bids we will have more accurate cost estimates for the alternate infill materials.

Please do not hesitate to call if you have any questions or require additional information.
EXHIBIT 1

NATURAL GRASS/ SYNTHETIC TURF INFILL COST SUMMARY

SUMMARY OF TURF SYSTEM COST AND TIMING OVER 24 YEARS

<table>
<thead>
<tr>
<th>YR</th>
<th>SUMMARY OF TURF SYSTEM COST AND TIMING OVER 24 YEARS</th>
<th>Crumb Rubber Infill</th>
<th>Organic Infill</th>
<th>PureFill (Cork)</th>
<th>Envirofill (acrylic coated sand)</th>
<th>TPE/ EPDM</th>
<th>EcoGreen (TPE)</th>
<th>Natural Turf Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial Construction</td>
<td>$ 1,100,000</td>
<td>$ 1,136,384</td>
<td>$ 1,276,384</td>
<td>$ 1,223,584</td>
<td>$ 1,427,024</td>
<td>$ 1,298,784</td>
<td>$ 90,000</td>
</tr>
<tr>
<td>6</td>
<td>Infill Replacement</td>
<td>$ -</td>
<td>$ 144,200</td>
<td>$ 144,200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Maintenance YR 1-8</td>
<td>$ -</td>
<td>$ 112,522</td>
<td>$ 33,600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 530,240</td>
</tr>
<tr>
<td>12</td>
<td>Maintenance YR 9-12</td>
<td>$ -</td>
<td>$ 46,340</td>
<td>$ 16,800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 198,840</td>
</tr>
<tr>
<td>12</td>
<td>Carpet Replacement</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Infill Replacement</td>
<td>$ 121,691</td>
<td>$ 144,200</td>
<td>$ 144,200</td>
<td>$ 168,400</td>
<td>$ 448,616</td>
<td>$ 243,600</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Grass Resod YR 4,7,10,13</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 360,000</td>
</tr>
<tr>
<td>18</td>
<td>Maintenance 12-20</td>
<td>$ -</td>
<td>$ 112,522</td>
<td>$ 33,600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 530,240</td>
</tr>
<tr>
<td>18</td>
<td>Infill Replacement</td>
<td>$ -</td>
<td>$ 144,200</td>
<td>$ 144,200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Maintenance 20-24</td>
<td>$ -</td>
<td>$ 46,340</td>
<td>$ 16,800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 198,840</td>
</tr>
<tr>
<td>24</td>
<td>Carpet Replacement</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>$ 500,000</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Grass Resod YR 16,19,22,25</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 360,000</td>
</tr>
<tr>
<td>24</td>
<td>Infill Replacement</td>
<td>$ 121,691</td>
<td>$ 144,200</td>
<td>$ 144,200</td>
<td>$ 168,400</td>
<td>$ 448,616</td>
<td>$ 243,600</td>
<td>-</td>
</tr>
<tr>
<td>Total 24 YR Budget</td>
<td>$ 2,343,382</td>
<td>$ 3,030,908</td>
<td>$ 2,953,984</td>
<td>$ 2,560,384</td>
<td>$ 3,324,256</td>
<td>$ 2,785,984</td>
<td>$ 2,268,160</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Initial Construction</th>
<th>Additional Maintenance</th>
<th>Infill & Carpet Replacement</th>
<th>Grass Resod</th>
<th>Total 24 YR Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Construction</td>
<td>$ 1,100,000</td>
<td>$ -</td>
<td>$ 1,243,382</td>
<td>$ -</td>
<td>$ 2,343,382</td>
</tr>
<tr>
<td>Additional Maintenance</td>
<td>$ -</td>
<td>$ 317,724</td>
<td>$ 1,576,800</td>
<td>$ -</td>
<td>$ 2,560,384</td>
</tr>
<tr>
<td>Infill & Carpet Replacement</td>
<td>$ 1,243,382</td>
<td>$ -</td>
<td>$ 1,576,800</td>
<td>$ -</td>
<td>$ 2,953,984</td>
</tr>
<tr>
<td>Grass Resod</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ 3,324,256</td>
</tr>
<tr>
<td>Total 24 YR Budget</td>
<td>$ 2,343,382</td>
<td>$ 3,030,908</td>
<td>$ 2,953,984</td>
<td>$ 720,000</td>
<td>$ 2,268,160</td>
</tr>
</tbody>
</table>

20160309 Turf Analysis.xlsx 3/9/2016
EXHIBIT 2
Turf System Infill Costs
Initial Construction Budget

$ (Millions)

<table>
<thead>
<tr>
<th>Infill Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crumb Rubber Infill</td>
<td>$1.10</td>
</tr>
<tr>
<td>Organic Infill</td>
<td>$1.14</td>
</tr>
<tr>
<td>PureFill (Cork)</td>
<td>$1.28</td>
</tr>
<tr>
<td>Envirofill (acrylic coated sand)</td>
<td>$1.22</td>
</tr>
<tr>
<td>TPE/ EPDM</td>
<td>$1.43</td>
</tr>
<tr>
<td>EcoGreen (TPE)</td>
<td>$1.30</td>
</tr>
<tr>
<td>Natural Turf Grass</td>
<td>$0.09</td>
</tr>
</tbody>
</table>
EXHIBIT 3
Turf System InFill/Sod Material Only Cost Comparisons
Infill and grass only budget through 13 Years (No Escalation)
EXHIBIT 4

Synthetic Turf Infill Alternatives
Total Budget Through 24 Years (No Escalation)
EXHIBIT 5
Turf System Cumulative Costs
Total Budget Through 24 Years (No Escalation)
Agenda Item

7.16 Artificial Turf - High School Stadium Playing Surfaces

Meeting: 06/23/2009 4th Tuesday School Board Meeting 6:30 p.m.
Category: 7. Approval of Consent Agenda
Agenda Type: Action (Consent)
Agenda Item Content

SUMMARY:

Staff in the Department of Instruction and the Department of Construction Services have performed an in-depth analysis and life-cycle assessment of natural grass vs. artificial turf for high school stadium playing surfaces. The analysis included consideration for student safety, costs, environmental impact and use. Staff recommends implementation of artificial turf as a standard on the stadium fields beginning with Tuscarora High School and Woodgrove High School. Staff further recommends the application of artificial turf on the athletic practice fields at the schools pending funding availability.

Discussion about artificial turf occurred during the June 9, 2009 meeting of the Finance, Construction and Site Acquisition Committee. Additional detailed information has also been provided.

RECOMMENDATION:

That the Loudoun County School Board approve acquisition and installation of artificial turf on the stadium fields as a standard beginning with Tuscarora High School and Woodgrove High School. Further recommendation that artificial turf be installed at the schools' athletic practice fields provided bids are received within project funding.

Staff Reference: Jeffrey K. Platenberg
Telephone: 571-252-1385

Staff Reference: Kevin L. Lewis
Telephone: 571-252-1161

Staff Reference: Les Cummings
Telephone: 571-252-1451

Action Agenda Details

Motion: Approval of Consent Agenda.

Motion By: Warren Geurin Second: John Stevens
Action: Unanimous

Voting Record
Jennifer Bergel Yea
Robert DuPree Yea
Warren Geurin Yea
Priscilla Godfrey Yea
Joseph Guzman Yea
Tom Marshall Yea
Bob Ohneiser Yea
Thomas Reed Yea
John Stevens Yea
TO: Dr. Edgar Hatrick
Superintendent

FROM: Jeffrey K. Platenberg
Assistant Superintendent for Support Services

DATE: June 17, 2009

SUBJECT: Artificial Turf v. Natural Grass

Student safety, costs, environmental impact, and use, associated with equipping high school stadium playing surfaces with artificial turf, have been discussed and researched by the Departments of Construction and Instruction. Detailed information about artificial turf, provided by Mr. Kevin Lewis, Director of Construction, is attached.

Please let me know if you have any questions about this memorandum or if you require additional information.

Attachment

Copy: Kevin Lewis, Director of Construction
TO: Jeffrey K. Platenberg
Assistant Superintendent for Support Services

From: Kevin L. Lewis, PE
Director of Construction Services

DATE: June 8, 2009

SUBJECT: Highlights Artificial Turf vs Natural Grass

- Premium costs to install a stadium field could be as much as $550,000 (payback 5-6 yr)
- Retrofit of an existing stadium will likely exceed $950,000. (payback 7-8 yr)
- Annual maintenance and irrigation costs of $70,000 for natural turf
 $10,000 for artificial installations.
- Artificial turf field utilization rate can be 10 times that of natural grass.
- The artificial turf represents a savings of over 160,000 gallons per week (four field complex)
- Artificial turf field life cycle = 11-15 years ($32,000/yr replacement escrow)
- Natural grass field life cycle = 2-3 years ($21,000/yr replacement escrow)
- Opens additional fields for PRCS uses
- Eliminates numerous postponements of athletic events for the school except under severe situations involving lightning
- The fields can be used for Physical Education instruction daily during the school year.
TO: Jeffrey K. Platenberg
Assistant Superintendent for Support Services

From: Kevin L. Lewis, PE
Director of Construction Services

DATE: June 1, 2009

SUBJECT: Artificial Turf

The Department of Instruction (DI) and the Department for Construction Services (DCS) have consulted with vendors, contractors and consulting engineers to evaluate the cost benefit of incorporating artificial turf for high school athletic facilities. DI has prioritized the fields in terms of frequency of utilization, safety and inclimate weather use. It has been determined that LCPS student athletic activities will benefit with respect to competition and practice in the following prioritization: Stadium field, Athletic practice field, and Competition baseball/softball. DCS has evaluated initial costs, life cycle costs, maintenance costs, irrigation costs and resources.

It is anticipated that the premium costs to install a stadium field could be as much as $550,000 depending on the features chosen. This represents as much as 55% increase in first costs for installation and the first year of maintenance. Additional competition fields will resemble the premium percentage proportionally. Cost estimates for retrofit of an existing stadium will likely exceed $950,000. Manufacturer’s product data and supporting research indicates annual maintenance and irrigation costs of $70,000 for natural turf in contrast to less than $10,000 for artificial installations. When combined with the 10 fold utilization rate resulting from the added durability, the costs per athletic event is drastically less for the artificial surface.

With respect to the environment, both options represent a positive and negative affects to the environment. The artificial turf represents a savings of over 160,000 gallons of water per week during watering season for a four field complex. However the carbon footprint of a natural turf fields is estimated at 19 tons of CO² versus the 108 tons associated with certain types of artificial turf.
The life cycle of the two systems vary substantially. The natural turf is recommended to be replaced after every 2-3 years of use at a cost in today's dollars of $63,000. The life expectancy of an artificial field ranges from 11-15 years requiring an average of $32,000 per year in fund raising. Clearly both types of surface treatment have successful installations outlasting these estimates, however the values presented have been utilized in this comparison. The attached life cycle analysis has been provided by Mondo USA and is one of the products evaluated in this study.

Given consideration of initial costs, maintenance costs, and increased utilization, DCS recommends implementation of the artificial turf for the high school stadium when the project budget will support the initial costs. Each facility must also understand the commitment to replace the field at the end of its life from a financial standpoint. Additionally, the high utilization frequency of the athletic practice field also warrants the implementation of the artificial surface. As efforts for water conversation increase, the baseball and softball competition fields may be considered in terms of environmental sustainability but are likely not justified in terms of durability as these fields are in less demand on a regular basis.

It should be noted that DCS has not considered nor does it endorse artificial turf fields in terms of athletic performance, injuries or environmental health.

DCS is currently evaluating the project budget and construction schedule for Woodgrove High School and Tuscarora High School in the event a determination is made to substitute the artificial surface for the natural grass which is currently specified in both projects.

Please don’t hesitate to call if there are questions.
Total Cumulative Costs of Artificial Turf versus Natural Grass
Multipurpose Football, Soccer, & Lacrosse Field

Note: Artificial grass is replaced at the start of the 11th year

Source: Mondo USA
Benefits of a stadium and practice turf field over natural grass for the school system:

1. Turf fields can be used 24/7 without damage. Approximately 3,000 hours of usage a year compared to 1,200 for natural grass.

1. The fields can be used for Physical Education instruction daily during the school year.

2. The stadium field gives the school another practice facility for fall and spring sport teams. This may save thousands of dollars by not transporting at least one team off campus for practices during the spring each day. A turf stadium and practice field will support the large amount of traffic from all physical education classes and athletic teams without the need to close them for refurbishing.

3. Eliminates numerous postponements of athletic events for the school except under severe situations involving lightning.

4. When weather conditions close natural grass fields, games for all high schools can be scheduled throughout the week to eliminate a backlog of games and in some cases the elimination of games due to District, Regional and State deadlines.

5. The stadium turf fields will become the host site for District, Regional and State contest for all 12 high schools in the county guaranteeing a quality and safe field for competition late in the season when natural grass fields are worn.

6. Opens additional fields for the Parks and Recreation youth leagues and community leagues with approval of school system.
LCPS Synthetic Turf Alternative
Infill Analysis

SUMMARY REPORT
January 27, 2016
BCG Project # 8615-01-001

Cody Francis, PE

Prepared for:
Loudoun County Public Schools
21000 Education Court
Ashburn, VA 20148
INTRODUCTION
Bowman Consulting Group (BCG) analyzed a variety of turf infill systems at the request of Loudoun County Public Schools (LCPS). This analysis consisted of identifying alternative infill systems and assessing the cost and anticipated performance relative to the styrene-butadiene (SBR) crumb rubber infill currently specified and installed or planned at ten high schools within the county. The alternatives assessed included alternative crumb rubber, coated sand, and organic infill. As many products are available, this report is not considered all-inclusive, but is representative of major product classes available in the market.

BACKGROUND
LCPS currently has fields installed or under construction at ten high schools including:

- Woodgrove High School (2010)
- Tuscarora High School (2010)
- John Champe High School (2012)
- Loudoun County High School (2014)
- Rock Ridge High School (2014)
- Loudoun Valley High School (2014)
- Park View High School (2015)
- Stone Bridge High School (2015)
- Riverside High School (2015)
- Broad Run High School (2015)

The synthetic turf fields installed at these schools all utilize a tufted polyethylene grass carpet with two inches of infill consisting of a mix of SBR crumb rubber and sand. The source of the SBR rubber is generically from recycled tires. This system was selected during construction of Woodgrove and Tuscarora high schools, and it is the most widely-used synthetic turf system in America. The current LCPS specification was developed largely by Gale and Associates, a nationally recognized sports specialty consultant. Revisions to specifications over the course of the last five years generally consisted of clarifications to bidders to enhance competition and improve installation quality, but the overall infill system has remained the same.

Key components of the current specification include contractor qualifications, material specifications, installation procedures, and testing. Items considered most important to field performance are product durability expressed as a warranty requirement, drainage expressed as an infiltration requirement, and cushioning expressed as a shock absorption requirement (ASTM F355 GMAX). See Attachment 5 for current LCPS specifications.

Over the course of the last few years, national media has reported on growing concern by the public about potential health risks related to the use of SBR rubber infill on sports fields, specifically its potential as a carcinogen. Locally, LCPS has received inquiries from parents on the same topic. In response to these concerns, LCPS engaged BCG to assess other infill systems in terms of installation and maintenance cost, as well as performance. The analysis did not include environmental, energy, or toxicity. Other jurisdictions have performed similar analyses, and one prepared by Montgomery
LCPS Synthetic Turf Alternative Infill Analysis

Page 2

January 27, 2016

County, Maryland has been included for your reference. (See Attachment 2) In addition, Gale and Associates provided a comparison last year for your use that is shown in Attachment 3. The results of our analysis are contained in Attachment 1 and summarized as follows:

CONSTRUCTION COST
All of the alternative infills cost more to install and maintain than the SBR rubber and sand mixture currently specified. The higher installation costs consist largely of the infill material cost, shock pads required to meet ASTM F355 GMAX requirements for some infill systems, and watering systems required to avoid excessive drying of organic infill. There is some industry debate among manufacturers as to whether a shock pad is required with cork infill. Fieldturf indicates that a shock pad is necessary to meet ASTM F355 GMAX requirements with their PureFill cork infill, but GreenPlay does not. The material used by both appears to be the same, and the issue is an important one both from a cost and performance standpoint. We recommend visiting and performing ASTM F355 GMAX testing on existing fields with each prior to making a product selection (See Attachment 4 for sample Gmax test).

MAINTENANCE COST
The organic infill maintenance cost is higher than the SBR rubber and sand mixture currently specified, but the other infills have similar maintenance costs. The organic infill needs to be watered to avoid excessive drying, and also requires annual replenishment to replace material loss through decomposition and wind throw. Aside from these two maintenance requirements, there is no significant difference in grooming equipment or frequency for the various infills.

LIFE CYCLE
All the products are expected to last the typical 8 year LCPS warranty period. Each manufacturer makes different assumptions about competing products and which greatly affect life cycle cost, and which present theirs in the most favorable light. The assumptions we used reflect review of a number of different systems and manufacturer recommendations.

Our assumptions which seem consistent with what we find among industry information are as follow: Crumb rubber infill typically lasts the life of the entire turf system (8-12 years). The turf carpet is expected to last beyond the warranty period, and for this analysis the expected life is 12 years. Organic infill material can be warranted for 8 years, but it is not expected to last beyond the warranty. Replacement at the end of year 8 is anticipated in the 12 year life cycle cost. Comparisons of both life cycles have been provided on Attachment 1 to provide an estimate range of costs. The difference in useful life increases its cost relative to SBR rubber and the other synthetic infill mixes whose life cycles are generally as long as the carpet.

PROCUREMENT
LCPS specifications avoid mentioning a name brand or make of products, consistent with the Virginia Public Procurement Act (VPPA). Most of the alternative infill mixes are proprietary in nature in that it would be necessary to state the name brand and type of infill to be used. Several options exist to avoid bid protests or loss of control of product type.
First, the Invitation to Bid can expressly state that only a particular manufacturer and turf system is
to be used. The VPPA does contemplate this. You may wish to obtain legal counsel prior to doing this.

Second, the current specifications could be replaced with a performance specification stating only
how the product is to function (warranty, ASTM F355 GMAX, maintenance, etc.) rather than stating
what the infill needs to be. This will promote competition but may result in some loss of product
control. This can be limited by maintaining strict qualification and experience standards for the
installer and manufacturer to avoid products with limited history.

Third, a qualifications and product performance based task order contract could be created for
synthetic turf fields. This would provide the greatest consistency, competition, and product control,
but would introduce a new schedule and coordination risk into construction projects where two
general contractors would be involved.

CONCLUSION

All of the turf systems reviewed have higher costs that what is currently specified on LCPS projects.
A variety of products are available that will meet current LCPS performance standards. We
recommend visiting installed fields and performing Gmax testing and infiltration testing of existing
fields prior to selecting an alternative system.
The comparison shown below is based on a typical 80,000 SF stadium field. Scenarios anticipate 2.5" monofilament synthetic turf. The comparison is limited to the infill system which differ from the other. Most system components, including the monofilament turf, base, and drainage are the same. Grooming equipment and frequency requirements for both infill systems appear equivalent. As such they have been excluded.

Crumb rubber infill typically lasts the life of the system (8-12 years). Organic fill can be warranted for 8 years, but as an organic product is not expected to last beyond the warranty. Replacement at the end of year 8 is anticipated in the 12 year life cycle cost. Comparisons of both life cycles have been provided to provide an estimate range of costs. Because removal at the end of the infill life is required, this estimated cost has been included in the comparison. The organic infill disposal cost was assumed to removal and transportation only because the likelihood of reuse is high compared to the rubber infill.

Demolition at end of year 12 was considered to be the same for both. Because of the low cost of money (2.78% per February bond sale) and because it is very close to the assumed inflation over the comparison period (1%+- spread), time value of money was not considered to be a significant factor in this comparison and was not included.

LCPS Synthetic Turf Alternative Infill Analysis

<table>
<thead>
<tr>
<th>Infill System</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
<th>Frequency</th>
<th>Life</th>
<th>Annual Cost</th>
<th>Year 1-8 Cost</th>
<th>Year 9-12 Cost</th>
<th>Total 12-Year Cost</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crumb Rubber Infill</td>
<td></td>
</tr>
<tr>
<td>Infill Install</td>
<td></td>
</tr>
<tr>
<td>Crumb Rubber</td>
<td>129.6</td>
<td>Tons</td>
<td>$460.00</td>
<td>$59,616</td>
<td>12</td>
<td>N/A</td>
<td>$59,616</td>
<td>$0</td>
<td>$59,616</td>
<td></td>
<td>3.24# per SF (approx. 1.39" at 28#/CF)</td>
</tr>
<tr>
<td>Sand</td>
<td>120</td>
<td>Tons</td>
<td>$180.00</td>
<td>$21,600</td>
<td>12</td>
<td>N/A</td>
<td>$21,600</td>
<td>0</td>
<td>$21,600</td>
<td></td>
<td>3.00# per SF (approx. 0.36" at 100#/CF)</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td>No additional maintenance relative to GreenPlay</td>
</tr>
<tr>
<td>Disposal</td>
<td>249.6</td>
<td>Tons</td>
<td>$62.00</td>
<td>$15,475</td>
<td>0</td>
<td></td>
<td>$15,475</td>
<td>$15,475</td>
<td></td>
<td></td>
<td>Assumed to go to solid waste facility</td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$81,216</td>
<td>$0</td>
<td>$96,691</td>
<td></td>
</tr>
<tr>
<td>GreenPlay Organic Infill</td>
<td></td>
</tr>
<tr>
<td>Infill Install</td>
<td></td>
</tr>
<tr>
<td>GreenPlay Organic Infill</td>
<td>80</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$96,000</td>
<td>8</td>
<td></td>
<td>$96,000</td>
<td>$96,000</td>
<td>$96,000</td>
<td>$192,000</td>
<td>2.00# per SF (approx. 2" at 12#/CF)</td>
</tr>
<tr>
<td>Sand</td>
<td>120</td>
<td>Tons</td>
<td>$180.00</td>
<td>$21,600</td>
<td>12</td>
<td></td>
<td>$21,600</td>
<td>0</td>
<td>$21,600</td>
<td></td>
<td>3.00# per SF (approx. 0.36" at 100#/CF)</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Moisture Control</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>1 Ea.</td>
<td></td>
<td>$10,000</td>
<td>$10,000</td>
<td>Once</td>
<td>N/A</td>
<td>$10,000</td>
<td>$0</td>
<td>$10,000</td>
<td></td>
<td>Kifco Water-Reel E-2005</td>
</tr>
<tr>
<td>Water Cost</td>
<td>6 1,000 Gal</td>
<td></td>
<td>$10.21</td>
<td>$61.26</td>
<td>WeeklyX12</td>
<td>N/A</td>
<td>$5,881</td>
<td>$2,940</td>
<td>$8,821</td>
<td>Weekly watering for 3 month, Loudoun Water rates</td>
<td></td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td>1 Ea.</td>
<td></td>
<td>$42,841</td>
<td>$42,841</td>
<td>Once</td>
<td>N/A</td>
<td>$42,841</td>
<td>0</td>
<td>$42,841</td>
<td></td>
<td>1-1/2” Meter. One time install cost.</td>
</tr>
<tr>
<td>Water piping installation</td>
<td>1 Ea.</td>
<td></td>
<td>$20,000</td>
<td>$20,000</td>
<td>Once</td>
<td>N/A</td>
<td>$20,000</td>
<td>0</td>
<td>$20,000</td>
<td></td>
<td>Assumes 400 LF @ $50/LF. One time install cost.</td>
</tr>
<tr>
<td>Monitoring System</td>
<td>1 Ea.</td>
<td></td>
<td>$200</td>
<td>$200</td>
<td>Once</td>
<td>N/A</td>
<td>$200</td>
<td>0</td>
<td>$200</td>
<td></td>
<td>Extech Moister Meter - model M0210</td>
</tr>
<tr>
<td>Replenishment</td>
<td>3.5 Tons</td>
<td></td>
<td>$1,200.00</td>
<td>$4,200</td>
<td>Annually</td>
<td>N/A</td>
<td>$33,600</td>
<td>$16,800</td>
<td>$50,400</td>
<td>Assumes 3-5% annually</td>
<td></td>
</tr>
<tr>
<td>Disposal</td>
<td>160</td>
<td>Tons</td>
<td>$20.00</td>
<td>$3,200</td>
<td></td>
<td></td>
<td>$3,200</td>
<td>$3,200</td>
<td></td>
<td></td>
<td>Assumed reuse. Removal/transportation only.</td>
</tr>
<tr>
<td>Infill Removal</td>
<td>1 LS</td>
<td></td>
<td>$25,000</td>
<td>$25,000</td>
<td></td>
<td></td>
<td>$25,000</td>
<td>$25,000</td>
<td>$50,000</td>
<td>Take out and place in truck at end of year 8.</td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$231,722</td>
<td>$117,340</td>
<td>$349,062</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Cost Relative to SBR Infill (Total)

- **Crumb Rubber Infill**: $150,506, $117,340, $252,371
- **GreenPlay Organic Infill**: $18,813, $29,335, $21,031

Estimated Cost Relative to SBR Infill (as % above typical $1.3M turf conversion)

- **Crumb Rubber Infill**: 12%
- **GreenPlay Organic Infill**: 19%
FieldTurf PureFill (Cork)

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
<th>Frequency</th>
<th>Life</th>
<th>Annual Cost</th>
<th>Year 1-8 Cost</th>
<th>Year 9-12 Cost</th>
<th>Total 12-Year Cost</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infill Install</td>
<td></td>
</tr>
<tr>
<td>Purefill</td>
<td>80</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$96,000</td>
<td>8</td>
<td></td>
<td>$96,000</td>
<td>$96,000</td>
<td></td>
<td>$192,000</td>
<td>2.00#/per SF (approx. 2” at 12#/CF)</td>
</tr>
<tr>
<td>Sand</td>
<td>120</td>
<td>Tons</td>
<td>$180.00</td>
<td>$21,600</td>
<td>12</td>
<td></td>
<td>$21,600</td>
<td>$0</td>
<td></td>
<td>$21,600</td>
<td>3.00#/per SF (approx. 0.36” at 100#/CF)</td>
</tr>
<tr>
<td>Shock pad/drainage tile</td>
<td>80,000</td>
<td>SF</td>
<td>$1.75</td>
<td>$140,000</td>
<td>12</td>
<td></td>
<td>$140,000</td>
<td>$0</td>
<td></td>
<td>$140,000</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Water Cost</td>
<td></td>
<td>Water not required per FieldTurf rep</td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td></td>
</tr>
<tr>
<td>Water piping installation</td>
<td></td>
</tr>
<tr>
<td>Replenishment</td>
<td>3.5</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$4,200</td>
<td>Annually</td>
<td>$4,200</td>
<td>$33,600</td>
<td>$16,800</td>
<td></td>
<td>$50,400</td>
<td>Assumes 3-5% annually</td>
</tr>
<tr>
<td>Disposal</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Maintenance shown is relative to crumb rubber</td>
<td>Maintenance shown is relative to crumb rubber</td>
<td>Water not required per FieldTurf rep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Water Cost</td>
<td></td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td></td>
</tr>
<tr>
<td>Water piping installation</td>
<td></td>
</tr>
<tr>
<td>Replenishment</td>
<td>3.5</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$4,200</td>
<td>Annually</td>
<td>$4,200</td>
<td>$33,600</td>
<td>$16,800</td>
<td></td>
<td>$50,400</td>
<td>Assumes 3-5% annually</td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
</tr>
<tr>
<td>Infill Install</td>
<td></td>
</tr>
<tr>
<td>Purefill</td>
<td>80</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$96,000</td>
<td>8</td>
<td></td>
<td>$96,000</td>
<td>$96,000</td>
<td></td>
<td>$192,000</td>
<td>2.00#/per SF (approx. 2” at 12#/CF)</td>
</tr>
<tr>
<td>Sand</td>
<td>120</td>
<td>Tons</td>
<td>$180.00</td>
<td>$21,600</td>
<td>12</td>
<td></td>
<td>$21,600</td>
<td>$0</td>
<td></td>
<td>$21,600</td>
<td>3.00#/per SF (approx. 0.36” at 100#/CF)</td>
</tr>
<tr>
<td>Shock pad/drainage tile</td>
<td>80,000</td>
<td>SF</td>
<td>$1.75</td>
<td>$140,000</td>
<td>12</td>
<td></td>
<td>$140,000</td>
<td>$0</td>
<td></td>
<td>$140,000</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Water Cost</td>
<td></td>
<td>Water not required per FieldTurf rep</td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td></td>
</tr>
<tr>
<td>Water piping installation</td>
<td></td>
</tr>
<tr>
<td>Replenishment</td>
<td>3.5</td>
<td>Tons</td>
<td>$1,200.00</td>
<td>$4,200</td>
<td>Annually</td>
<td>$4,200</td>
<td>$33,600</td>
<td>$16,800</td>
<td></td>
<td>$50,400</td>
<td>Assumes 3-5% annually</td>
</tr>
</tbody>
</table>

Estimated Cost Relative to SBR Infill (Total):

USGreentech Envirofill (acrylic coated sand)

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
<th>Frequency</th>
<th>Life</th>
<th>Annual Cost</th>
<th>Year 1-8 Cost</th>
<th>Year 9-12 Cost</th>
<th>Total 12-Year Cost</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infill Install</td>
<td></td>
</tr>
<tr>
<td>Envirofill</td>
<td>80,000</td>
<td>SF</td>
<td>$1.56</td>
<td>$124,800</td>
<td>16</td>
<td></td>
<td>$124,800</td>
<td>$124,800</td>
<td></td>
<td>$124,800</td>
<td>6.5#/per SF (thinner system relies more on pad)</td>
</tr>
<tr>
<td>Shock Pad</td>
<td>80,000</td>
<td>SF</td>
<td>$1.00</td>
<td>$80,000</td>
<td>16</td>
<td></td>
<td>$80,000</td>
<td>$80,000</td>
<td></td>
<td>$80,000</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Water Cost</td>
<td></td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td></td>
</tr>
<tr>
<td>Water piping installation</td>
<td></td>
</tr>
<tr>
<td>Replenishment</td>
<td></td>
</tr>
<tr>
<td>Disposal</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Water Cost</td>
<td></td>
</tr>
<tr>
<td>Water Meter and Availability</td>
<td></td>
</tr>
<tr>
<td>Water piping installation</td>
<td></td>
</tr>
<tr>
<td>Replenishment</td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Cost Relative to SBR Infill (Total):

Estimated Cost Relative to SBR Infill (Annual):

Estimated Cost Relative to SBR Infill (as % above typical $1.3M turf conversion):

16% 24%
<table>
<thead>
<tr>
<th>Attachment 1</th>
<th>LCPS Synthetic Turf Alternative Infill Analysis</th>
</tr>
</thead>
</table>

Sprinturf TPE/EPDM

<table>
<thead>
<tr>
<th>Infill Install</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
<th>Frequency</th>
<th>Life</th>
<th>Annual Cost</th>
<th>Year 1-8 Cost</th>
<th>Year 9-12 Cost</th>
<th>Total 12-Year Cost</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE/EPDM</td>
<td>180</td>
<td>Ton</td>
<td>$2,200.00</td>
<td>$396,000</td>
<td>16</td>
<td></td>
<td>$396,000</td>
<td>$396,000</td>
<td>$396,000</td>
<td>$396,000</td>
<td>Sprinturf indicates $4.00-$4.25/SF premium vs. SBR</td>
</tr>
<tr>
<td>Sand</td>
<td>68</td>
<td>Ton</td>
<td>$180.00</td>
<td>$12,240</td>
<td>16</td>
<td></td>
<td>$12,240</td>
<td>$12,240</td>
<td>$12,240</td>
<td>$12,240</td>
<td>1.7 #/SF</td>
</tr>
</tbody>
</table>

Maintenance

- **Infill Install**
 - **Sprinturf**
 - **Quantity**: 180 Ton
 - **Unit Cost**: $2,200.00
 - **Cost**: $396,000
 - **Frequency**: 16
 - **Life**: Annual
 - **Year 1-8 Cost**: $396,000
 - **Year 9-12 Cost**: $396,000
 - **Total 12-Year Cost**: $396,000
 - **Description/Notes**: Sprinturf indicates $4.00-$4.25/SF premium vs. SBR

Estimated Cost Relative to SBR Infill (Total)

- **Total Cost**: $408,240

Estimated Cost Relative to SBR Infill (Annual)

- **Total Cost**: $40,878

Estimated Cost Relative to SBR Infill (as % above typical $1.3M turf conversion)

- **Total Cost**: 25%

Field Turf EcoGreen (TPE)

<table>
<thead>
<tr>
<th>Infill Install</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Cost</th>
<th>Frequency</th>
<th>Life</th>
<th>Annual Cost</th>
<th>Year 1-8 Cost</th>
<th>Year 9-12 Cost</th>
<th>Total 12-Year Cost</th>
<th>Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoGreen Infill</td>
<td>80,000</td>
<td>SF</td>
<td>$2.50</td>
<td>$200,000</td>
<td>16</td>
<td></td>
<td>$200,000</td>
<td>$200,000</td>
<td>$200,000</td>
<td>$200,000</td>
<td>Maintenance shown is relative to crumb rubber</td>
</tr>
<tr>
<td>Shock Pad</td>
<td>80,000</td>
<td>SF</td>
<td>$1.00</td>
<td>$80,000</td>
<td>16</td>
<td></td>
<td>$80,000</td>
<td>$80,000</td>
<td>$80,000</td>
<td>$80,000</td>
<td></td>
</tr>
</tbody>
</table>

Maintenance

- **Infill Install**
 - **EcoGreen**
 - **Quantity**: 80,000 SF
 - **Unit Cost**: $2.50
 - **Cost**: $200,000
 - **Frequency**: 16
 - **Life**: Annual
 - **Year 1-8 Cost**: $200,000
 - **Year 9-12 Cost**: $200,000
 - **Total 12-Year Cost**: $200,000
 - **Description/Notes**: Maintenance shown is relative to crumb rubber

Estimated Cost Relative to SBR Infill (Total)

- **Total Cost**: $198,784

Estimated Cost Relative to SBR Infill (Annual)

- **Total Cost**: $24,848

Estimated Cost Relative to SBR Infill (as % above typical $1.3M turf conversion)

- **Total Cost**: 15%
A Review of Benefits and Issues Associated with Natural and Artificial Turf Rectangular Stadium Fields

Prepared by a Staff Work Group from Montgomery County Public Schools, Montgomery County Department of Parks, Montgomery County Council, Montgomery County Department of Environmental Protection, and Montgomery County Department of Health and Human Services

April 13, 2011
Table of Contents

Introduction: .. 3

Executive Summary: .. 4
 Montgomery County Public Rectangular Fields Inventory—Existing and Planned 4
 Considerations for Use of Natural and Artificial Turf Fields .. 4
 Playability (Hours of Use) ... 5
 Life-Cycle Cost Evaluation ... 5
 Public/Human Health Concerns .. 5
 Artificial Turf Heat Issue ... 6
 Environmental Impacts .. 6
 Alternative Infill Products ... 7

Background ... 8
 Montgomery County Public Rectangular Fields Inventory—Existing and Planned 8
 Montgomery County Park Fields ... 9
 MCPS High School Stadium Fields ... 10
 Artificial Turf Fields Information .. 11

County Demand for Quality Rectangular Turf Fields .. 12
 Montgomery County Parks ... 12
 Montgomery County Public Schools ... 14

Playability (Hours of Use) .. 20
 Comparing the Potential Hours of Use of Natural Grass and Artificial Turf Stadium Fields 20
 Artificial Turf Hours of Use .. 20
 Natural Turf Fields .. 21
 Hours of Use Comparison Chart .. 21

Life-Cycle Cost Evaluation ... 24
 Sand Base versus Native Soil Fields .. 24
 Bermuda Grass versus Cool Season Grass Fields .. 24
 Current Examples of Fields in Montgomery County .. 25
 Comparison of Natural and Artificial Turf Athletic Fields – Major Assumptions 25
 Lifecycle Cost Analysis (see Appendix D for more details) ... 26

Public/Human Health Concerns ... 29
 Summary .. 29
 Synopses of the reports reviewed by the work group ... 30

Artificial Turf Heat Concerns ... 37
 Background .. 37
 Options for Addressing the Heat Issue .. 38
 Work Group Recommendations: ... 38

Environmental Impacts ... 41
 Water Quality Impacts .. 41
 Comparing the Environmental Impacts of Natural Grass and Artificial Turf Fields 43
 DEP Recommendations .. 46
 Recommendations from Other Environmental Departments 46

Alternative Infill Products ... 50
 Types of Infill .. 50

Appendices ... 53
Introduction:

On July 1, 2010, the Montgomery County Council’s Transportation, Infrastructure, Energy, and Environment (T&E) Committee held a meeting with staffs from Montgomery County Public Schools (MCPS), Maryland National Capital Park and Planning Commission (M-NCPPC) Montgomery County Department of Parks (Parks), Montgomery County Department of Environmental Protection (DEP), and the Montgomery County Department of Health and Human Services (DHHS) to discuss health and safety issues associated with artificial turf fields in Montgomery County.

An outcome of the meeting was a T&E Committee request for the formation of a staff work group to prepare a report that would provide guidance to the Committee in the face of concerns raised by some citizens and groups (see Appendices I and J) over the use of artificial turf fields in the county. The work group would include staff members from MCPS, Parks, DEP, and DHHS along with a representative from Council staff. Specifically the committee requested the staff work group to further quantify the programming, environmental, cost-benefits, and other impacts of artificial turf vis-à-vis natural grass fields as part of its report. The T&E Committee requested this report by the end of 2010. However, it became evident that additional time was needed to complete research needed for this report.

Comments on this draft report should be submitted to TurfReportResponse@yahoo.com by close of business on May 13, 2011. Hard copy comments will be received at:

MCPS Department of Facilities Management, 2096 Gaither Road Rockville, MD 20850

A final report that will include a separate compilation of Public Comments received during the comment period will be assembled and presented to the T&E Committee for its review. The T&E Committee will decide the appropriate venue for discussion of the report and public comments.

The following Agency staff members were involved in the research and development of this report.

MCPS Staff
Joe Lavorgna, consultant to MCPS
James Song, Director of Facilities Management
William (Duke) Beattie, Director of Systemwide Athletics

M-NCPPC (Parks)
Mike Riley, Deputy Director, Montgomery County Department of Parks, M-NCPPC

Montgomery County Staff
Clark Beil, Montgomery County Department of Health and Human Services
Keith Levchenko, Montgomery County Council Staff
Steve Shofar, Montgomery County Department of Environmental Protection

Staff from the Maryland Soccer Foundation also provided substantial assistance to the group with regard to cost and maintenance assumptions for the natural grass and artificial turf fields they oversee at the Maryland SoccerPlex in Germantown, Maryland. The SoccerPlex staff also provided information on best practice trends in the sports field management industry.
Executive Summary:

Montgomery County Public Rectangular Fields Inventory—Existing and Planned
Montgomery County currently has 160 existing full-sized public stand alone natural turf rectangular fields plus seven existing artificial turf fields. In addition, there are 317 public natural turf multi-purpose overlay fields. There are seven planned artificial turf fields in the FY2011-2016 Capital Improvements Program (CIP) period. The most imminent are Laytonia Recreational Park and Paint Branch High School, both planned for construction in 2011. Parks also plans to install artificial turf on the slab of the old Wheaton ice rink, a covered open-air facility, to allow soccer, lacrosse, futsol, and other uses. This project will generate income for Parks enterprise fund.

Considerations for Use of Natural and Artificial Turf Fields

Need for Additional Fields: The Department of Parks prepares a park and recreation needs analysis every five years called the Land Preservation, Parks, and Recreation Plan (formerly called the Park, Recreation, and Open Space (PROS) plan). The plan points to the need for 123 additional athletic fields in the county by the year 2020, of which 73 are full-sized rectangular fields.

Difficulty of Maintaining High Quality High Use Natural Grass Fields: The necessary ingredients to sustain natural turf grass cover on an athletic field fall into three primary categories—construction, maintenance, and usage. All three must be carefully controlled, or the natural grass surface will likely become unsatisfactory and unsuitable for organized sports play. In order to sustain a high quality stand of natural turf grass on a field, it must be designed and constructed properly, be maintained regularly by qualified personnel, and have usage controlled and limited. If any one of the three factors is missing, natural turf cover on the field will deteriorate over time.

For Montgomery County Public Schools (MCPS) significant time, effort, and money is expended in trying to maintain safe, adequate playing conditions on high school stadium fields. This expenditure of resources consistently falls short of its goal, primarily because of the intensive wear and tear that result from so many sports and teams sharing natural grass high school stadium fields for competitive contests.

Finding: MCPS staff has identified the following operational benefits for artificial turf fields compared to existing natural grass high school stadium fields:

- Provides safer, more consistent, and more competitive surfaces for hundreds of MCPS and community teams.
- Provides safe, on-campus practice areas for MCPS athletic teams.
- A greater degree of MCPS compliance with Title IX. Field hockey contests are not played on the stadium field at approximately half of the MCPS high schools because of unsuitable field conditions.
- Minimal cancellations for MCPS events. Prevailing weather conditions in the fall and spring force many cancellations, disrupting parents’ as well as students’ schedules. The only weather conditions that would cause a postponement on artificial turf fields would be lightening or abnormally severe weather.
• Significant savings in maintenance. Savings include not only seed, grass, fertilizer, and water, but also an enormous savings in time and effort by school staff and parent volunteers.

• Physical education classes having access to a safe, all-weather surface for activities during the school day for more than half of the school year.

Playability (Hours of Use)

A primary reason both Parks and MCPS support the construction of artificial turf fields is the increased hours of use possible with an artificial turf field compared to a high quality natural grass field. These increased hours of use are achieved without risking degradation of the field. In addition, even under limited hours of use, natural grass fields can suffer major damage from intensive play, especially when play occurs during or immediately after storm events. The increased hours of use provided by artificial turf fields also means that the County can avoid the environmental impacts of building additional natural grass fields.

Finding: The actual hours of use of an artificial turf field (based on actual use of MCPS’ artificial turf stadium fields and the artificial turf fields at the Maryland Soccerplex) range from 1.7 to 7.7 times the use of existing natural grass fields (MCPS stadium fields, Parks fields, and Maryland Soccerplex fields)

Life-Cycle Cost Evaluation

A key factor in deciding whether to build an artificial turf field or a natural turf field is the comprehensive lifecycle costs (construction, maintenance, revenue, rehabilitation, replacement) including the cost per hour of use. The cost per hour of use is based on the estimated annual hours of use one can expect from the different field types based on the programming expected for the field.

The staff work group chose four natural grass field types to compare to a typical artificial turf field. The four natural grass field types consist of two different field bases (a ten-inch sand base and a native soil base) and two different grass types (Bermuda grass and Cool Season/Kentucky Bluegrass). The artificial turf field is assumed to be a polypropylene carpet with a crumb rubber infill.

Finding: The 20-year lifecycle cost analysis found that despite the higher up-front and future replacement costs, an artificial turf field provides a substantially lower net cost per hour of use than any of the natural grass options because of the many more hours of use and additional revenue generated from those extra hours of use.

Public/Human Health Concerns

Due to the distinct physical characteristics of artificial turf systems, concern has been raised over potential adverse health effects related to use of these systems. The potential physical health effects associated with artificial turf systems (carpet and infill) include:

• chemical exposures
• heat-related illnesses
• abrasions/turf-burns
• injuries infections, and allergic reactions
In the absence of either an environmental impact assessment or a health impact assessment on the installation and use of artificial turf fields, the work group identified some of the areas of potential human risks that were raised during the compilation of information that forms this report. This is not a complete set of risks. A formal process would be required to identify and examine all the human health risks from all the artificial turf field materials under consideration. Such an analysis was beyond the scope and capacity of the Artificial Turf Work Group.

Finding – Parks and MCPS believe that reliance should be placed on the various government studies referenced in this report that have looked at the human health issues associated with artificial turf fields (and crumb rubber infill in particular) and have not found levels of concern that warrant avoidance of the construction of new artificial turf fields with crumb rubber infill.

Artificial Turf Heat Issue
One characteristic of artificial turf fields that has been well documented is the higher field temperatures on artificial turf fields compared to natural grass fields under similar weather conditions. These conditions may vary depending on the color and other specifications of the artificial turf carpet and the type of the infill material used.

Work Group Recommendations:
• It is evident that surface and ambient temperatures on artificial turf fields can get quite hot. The work group believes MCPS should include the artificial turf heat issue in its athletic handbook in order to address circumstances where these fields are being used and/or supervised by MCPS directly during peak heat conditions (for instance for summer and early fall team practices and physical education classes).

This guidance should provide for an assessment of field conditions on a case by case basis by the athletic staff at the school (considering ambient and field temperature readings).

• The work group believes common permit language and advisory signage for all artificial turf fields managed by MCPS, Parks, and CUPF should be utilized.

• Community Use of Public Facilities (CUPF) should develop specific heat guidelines to govern the leasing of artificial turf fields to outside groups.

Environmental Impacts
The Staff Work Group asked Montgomery County DEP to provide its perspective on artificial turf based on its review of the various studies. From an environmental perspective, should MCPS and Parks not build any more artificial turf fields pending further study? DEP’s response has been that it does not have a position on artificial turf. DEP has also not provided any specific recommendations regarding the construction and use of artificial turf, such as whether water quality monitoring should be done for existing fields, if specific storm water management practices should be done, or whether particular alternative infill choices should be pursued.
Since the staff work group did not receive specific recommendations from Montgomery County DEP, the group reviewed a number of studies that focused on environmental issues and which included recommendations by other Environmental Departments.
Connecticut Department of Environmental Protection, July 2010

The full report is available at:
along with reports from other Connecticut agencies looking at various issues of concern regarding artificial turf.

San Francisco Department of the Environment (SFE) (as part of a Synthetic Playfields Task Force Report completed in August 2008).

Full Task Force Report available at:
http://www.superfill.net/dl010808/SFParks_Playfields_8.21.08.pdf. The Task Force took a broad look at artificial turf issues and more relevantly for this section included SFE findings and recommendations.

Finding: While both the Connecticut and San Francisco environmental departments identified potential environmental impacts, neither study determined that these impacts were of sufficient concern to warrant a moratorium on the construction of artificial turf fields with crumb rubber infill. Instead, both departments recommend specific practices to reduce or mitigate these impacts.

Recommendation: Parks and MCPS staffs should include language in future contracts requiring the recycling of artificial turf fields by the new field installer.

Recommendation: Parks and MCPS staffs should explore incorporating some of the environmental testing requirements identified in the City of San Francisco artificial turf specification into future specifications for artificial turf fields constructed for Parks and MCPS.

Alternative Infill Products
The artificial turf industry is expanding rapidly. Turf companies and infill manufacturers are attempting to respond to concerns with Styrene-Butadiene-Rubber (SBR) infill materials and are developing new alternatives. Because the industry is rapidly changing, decisions made on new companies and products should be well researched to make sure that the money spent on artificial turf systems is based on sound life-cycle cost information.

Finding—Many owners, installers, and suppliers of artificial turf fields believe that crumb rubber is the best infill product on the market because it has been field tested and proven for performance over a number of years. Alternative infill materials are being marketed primarily to compete with crumb rubber based on the negative perceptions attributed to SBR. While some of the alternative infills may show promise in terms of durability and performance over time, it is too early to invest in an unproven product until a greater track record is established for many of these materials.

Parks and MCPS believe that county agencies should continue to monitor the success or failure of alternative infills before considering a change from SBR infill material.
Background

Montgomery County Public Rectangular Fields Inventory—Existing and Planned

As shown in Chart I-1 below, there are currently 160 existing full-sized stand alone natural turf rectangular fields plus seven existing artificial turf fields. In addition, there are 317 natural turf multi-purpose overlay fields. There are seven planned artificial turf fields in the FY2011-2016 Capital Improvements Program (CIP) period. The most imminent are Laytonia Recreational Park and Paint Branch HS, both planned for construction in 2011.

For Montgomery County Parks, site selection criteria for public synthetic turf fields have included adequate site area for full size fields, parking, field lighting or the capability for lighting, and space to buffer communities from intense usage. These criteria generally limit the sites to regional / recreational parks and community recreation centers. There are presently no plans for synthetic turf in local/community use parks or on multi-purpose overlay fields. For Montgomery County Public Schools (MCPS) planned fields include only high school stadium fields.

Chart I-1. Tabulation of Existing and Proposed Natural and Synthetic Turf Rectangular Fields on M-NCPPC, MCPS, and County Properties (not including private sites and municipalities)

<table>
<thead>
<tr>
<th>Public Facilities</th>
<th>Full-Size Stand Alone Rectangular Fields</th>
<th>Existing Natural Turf Rectangular Overlays[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Turf</td>
<td>Artificial Turf</td>
</tr>
<tr>
<td>Regional / Recreational</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Local / Community-Use</td>
<td>92</td>
<td>3</td>
</tr>
<tr>
<td>MC Public Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School Stadium</td>
<td>22</td>
<td>(3)</td>
</tr>
<tr>
<td>High School Practice</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Elementary & Middle School</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MC Recreation Department</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Maryland SoccerPlex</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>160</td>
<td>10</td>
</tr>
</tbody>
</table>

[1] Overlays are multi-purpose natural turf areas where baseball / softball diamonds typically overlap rectangular fields. They generally do not support full sized rectangular fields. There are 317 rectangular overlays at park and school sites.

[2] There are 160 existing full size stand alone natural turf soccer fields at Park, School, and County sites. At MCPS, the full size stand alone fields are at high schools, with one at Tilden Middle School which is a former high school. All other MCPS elementary and middle school fields at schools are considered shared use multipurpose overlays which are generally permitted by CUPF.

[3] Thirteen new full size stand alone natural turf soccer fields are planned over six-year CIP cycle. They are: Laytonia Recreational Park (2), Northwest Branch Recreational Park (4), East Norbeck LP (1), Greenbriar LP (1), North Four Corners LP (1), Mid-County Community Recreation Center (1), White Oak Community Recreation Center (1), and Maryland SoccerPlex (2). Three existing MCPS stadium fields will be converted to artificial turf fields.

[4] The seven existing synthetic turf fields are at Blair Recreational Park / HS (1), Fairland Recreational Park (1), Richard Montgomery HS (1), Walter Johnson HS (1), and Maryland SoccerPlex (3).

[5] There are seven synthetic turf fields presently planned over the 6-year CIP, including new synthetic turf fields at the future Laytonia Recreational Park (1) and North Potomac Community Recreation Center (1), and conversions of existing natural turf soccer fields to synthetic turf at Paint Branch HS (1), Gaithersburg HS (1), Wheaton HS (1), and Maryland SoccerPlex (2).
Montgomery County Park Fields

Natural Turf Fields
There are currently 108 full size stand-alone rectangular fields in Montgomery Parks. Sixteen of these fields are in regional or recreational parks which are secured and restricted for use by permit only. The remaining 92 fields are in community-use parks and are available for walk-on use when not permitted.

An additional nine natural turf fields are planned in Parks over the current six-year CIP cycle. Six will be in regional / recreational parks and three will be in community use parks. One additional artificial turf field is planned for the Laytonia Recreational Park, and two artificial turf fields are under consideration by the Maryland Soccer Foundation for the Maryland SoccerPlex.

Artificial Turf Fields
There are two existing synthetic turf fields built and controlled by the Parks Department. Parks first synthetic turf field was built in 2008 at Montgomery Blair High School. When the property known as the “Kay Tract” was purchased for Blair High School, a portion of the funding came from State Program Open Space funds. Through a Memorandum of Understanding (MOU) with the County and MCPS, Parks manages and maintains three athletic fields in what is known as the “recreation parcel” at Blair, including the stadium field used by MCPS for football games and other school sports. This unique arrangement was created in part to allow for maximum community-use of the three fields outside of school needs and also to justify the use of Program Open Space funding. The stadium field was originally constructed as a natural turf field in 1998 in conjunction with the construction of the new high school. From the start, there was wide-spread dissatisfaction with the quality of turf on the field, with over-use being the primary cause of the problem. Parks originally permitted the stadium field for community use to an array of groups including the Washington Chiefs Football League, but eventually ceased permitting the field because school use alone left the field in undesirable condition most of the time.

When Parks began considering synthetic turf as one of several options to bridge the gap between supply and demand for field time, it conducted a detailed site selection process to prioritize venues for synthetic turf fields. The primary criteria for sites were the ability to handle intense use without conflicts with adjacent communities, adequate parking, and the existence or future capability of lighting. The stadium field at Blair emerged as the top site, and a rectangular field at Fairland Recreational Park was the second priority.

Fairland Recreational Park was opened in 1995. It included five athletic fields, including a full size rectangular field. Similar to Blair, the demand for use was high and the natural turf surface rapidly deteriorated. The field was renovated several times, but the turf cover did not stand up to the use. It was recently converted to artificial turf, and opened for community use by permit in December 2010.

There are currently three planned artificial turf fields for park facilities over the next six-years; one at Laytonia Recreational Park and two at the Maryland SoccerPlex. Parks also plans to install artificial turf on the slab of the old Wheaton ice rink, a covered open-air facility, to allow soccer, lacrosse, futsol, and other uses. This project will generate income for Parks enterprise fund.

Laytonia Park is currently approved in the CIP to provide four baseball / softball diamonds. However, current needs as defined by the most recent Land Preservation, Parks, and Recreation Plan call for a greater need for rectangular fields. In response, the Planning Board recently approved a change to the Laytonia plan to include three rectangular fields and one diamond field. The new plan calls for one of the rectangles
to be synthetic turf and the other two to be natural turf. Parks believes that the construction of premier natural grass and synthetic turf rectangular fields side by side in the same recreational park provides an excellent opportunity to fully test and evaluate the comparative cost and benefit of both grass and synthetic turf athletic field surfaces in Montgomery County. Parks will implement a program, in cooperation with other agencies, to carefully evaluate both grass and synthetic surfaces on rectangular athletic fields. The results of this program will be used to determine specifications for future athletic field construction and renovation projects in the parks, and the results could be used by the Planning Board and County Council in the review of other public and private projects that include athletic fields.

MCPS High School Stadium Fields

Below are specific facts concerning MCPS athletic fields:

- **Total Schools -** MCPS has 25 high schools.
- **Stadium Fields -** MCPS has 25 stadium fields that are used primarily for games, contests. (The stadium field at Montgomery Blair High School is owned and maintained by Montgomery County Parks.)
- **Types of Stadium Fields –** Twelve stadium fields have bluegrass or fescue on native soil. Ten stadium fields have Bermuda grass on native soil. Three stadium fields (Montgomery Blair, Richard Montgomery, and Walter Johnson) have artificial turf.
- **Stadium Field Use –** At 15 high schools twelve teams share the stadium field for home games. These teams include: varsity and junior varsity teams in field hockey, football, boys’ lacrosse, girls’ lacrosse, boys’ soccer, and girls’ soccer. At ten high schools, the field hockey team plays on a separate field because of adverse stadium field conditions.
- **Maintenance of Stadium Fields –** Each school receives a set amount each year for its athletic program, a portion of which is allocated by each school for stadium field maintenance. In addition, stadium field maintenance is supplemented by booster club donations and volunteer efforts.
- **On-Campus Full Practice Fields -** In addition to the 25 high school stadium fields, there are 56 approximately full-sized rectangular practice areas contained on MCPS high school sites. Many of these practice fields overlap baseball and/or softball outfields – they can be used as a rectangular field in the fall, but not in the spring during the baseball/softball season.
- **On-Campus “Partial” Fields -** There are twelve partial rectangular fields at MCPS high school sites – fields that are not regulation sized but can accommodate drills and small team practices.
- **MCPS Fields Permitted by Community Use of Public Facilities (CUPF) –** When not scheduled for school activities the three artificial turf stadium fields are permitted for community use through CUPF. The 56 full-sized practice fields mentioned above, in addition to the 22 natural turf stadium fields and the 12 partial fields, are not permitted for public use.
- **Practice Fields Adjacent to the School -** There are nine approximately full-sized rectangular fields located on property adjacent to high school sites (but off the school property).
- **Off Campus Fields –** 124 MCPS teams that use rectangular fields practiced off-site last year. These 124 teams utilized approximately 45 fields.
Artificial Turf Fields Information

In the United States there are approximately 5,500 artificial turf fields currently installed according to the Synthetic Turf Council (www.syntheticturf council.org). In Maryland and the Washington metropolitan area there are 54 artificial turf fields installed at 234 public high schools (See Appendix A). In Montgomery County outdoor artificial turf fields have been built at 16 locations with one in design review by the Montgomery County Department of Permitting Services (DPS) as shown in chart I-2. Of the 16 field locations in Montgomery County there are seven artificial turf fields at schools or parks (including three at the Maryland SoccerPlex in Germantown). There also are several indoor artificial turf fields in the county.

Chart I-2

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
<th>Date Opened</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bullis School</td>
<td>Constructed</td>
<td>2004</td>
<td>rectangular field</td>
</tr>
<tr>
<td>2 Church of the Little Flower</td>
<td>Constructed</td>
<td>2004</td>
<td>playground field</td>
</tr>
<tr>
<td>3 Connelly School of the Holy Child</td>
<td>Constructed</td>
<td>2010</td>
<td>rectangular field</td>
</tr>
<tr>
<td>4 Fairland Regional Park</td>
<td>Constructed</td>
<td>2010</td>
<td>rectangular field</td>
</tr>
<tr>
<td>5 Georgetown Preparatory School</td>
<td>Constructed</td>
<td>2006</td>
<td>rectangular field</td>
</tr>
<tr>
<td>6 Good Counsel High School</td>
<td>Constructed</td>
<td>2009</td>
<td>rectangular field</td>
</tr>
<tr>
<td>7 Holton Arms School</td>
<td>Constructed</td>
<td>2007</td>
<td>rectangular field</td>
</tr>
<tr>
<td>8 Holy Redeemer Church</td>
<td>Constructed</td>
<td>2010</td>
<td>playground field</td>
</tr>
<tr>
<td>9 Landon School</td>
<td>Constructed</td>
<td>2007</td>
<td>rectangular field</td>
</tr>
<tr>
<td>10 Maryland SoccerPlex</td>
<td>Constructed</td>
<td>2007</td>
<td>3 rectangular fields</td>
</tr>
<tr>
<td>11 Mater Dei School</td>
<td>Constructed</td>
<td>2009</td>
<td>rectangular field</td>
</tr>
<tr>
<td>12 Montgomery Blair High School</td>
<td>Constructed</td>
<td>2008</td>
<td>rectangular field</td>
</tr>
<tr>
<td>13 Our Lady of Lourdes</td>
<td>Constructed</td>
<td>2008</td>
<td>rectangular field</td>
</tr>
<tr>
<td>14 Richard Montgomery High School</td>
<td>Constructed</td>
<td>2009</td>
<td>rectangular field</td>
</tr>
<tr>
<td>15 St Andrew Episcopal School</td>
<td>Constructed</td>
<td>2008</td>
<td>2 rectangular fields & baseball diamonds</td>
</tr>
<tr>
<td>16 Walter Johnson High School</td>
<td>Constructed</td>
<td>2010</td>
<td>rectangular field</td>
</tr>
<tr>
<td>17 The German School</td>
<td>In Permitting Process</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indoor Fields in Montgomery County

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
<th>Date Opened</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Champions Field House</td>
<td>Constructed</td>
<td>2008-2011</td>
<td>5 rectangular fields of varying sizes (1 section rolls up)</td>
</tr>
<tr>
<td>2 Maryland Soccerplex</td>
<td>Constructed</td>
<td>2000</td>
<td>2 rectangular roll-out fields (replaced in 2009)</td>
</tr>
<tr>
<td>3 Rockville SportsPlex</td>
<td>Constructed</td>
<td>2000</td>
<td>3 rectangular fields (replaced in 2008)</td>
</tr>
</tbody>
</table>

*all outdoor fields and permanent indoor fields (non-roll-out) utilize crumb rubber infill

Artificial turf fields are really systems built using similar components—an underground drainage system with a compacted gravel base, a polypropylene or nylon fiber carpet, and infill product(s) used to hold the carpet fibers upright and to cushion the surface to mimic the characteristics of natural grass. Different manufacturers vary the carpet fibers and infill materials to distinguish their product.
Count...rectangular fields in Montgomery County—lack of capacity (not enough fields) and maintaining the quality of existing fields. These issues are faced by both Parks and MCPS as described below.

Montgomery County Parks

Ballfield Work Group & Ballfield Initiatives CIP Project

In January 1999, at the request of the County Council, the Planning Board and Interagency Coordinating Board – Community Use of Public Facilities (CUPF) approved the formation of a Ballfield Work Group to address the acute shortage of ballfields in Montgomery County. The group consisted of various ballfield user groups and staff from Parks, CUPF, MCPS, and the Department of Recreation. This work group existed for five years and initiated several operational and capital improvements to increase ballfield quality and capacity.

Also in 1999, the County Council approved the “Ballfield Initiatives” project in the Parks CIP. The purpose of the project as stated in the adopted CIP is: “The project addresses countywide ballfield needs by funding ballfield improvements on parkland, school sites, and other public sites or private properties”. The project is still active today and funds $8.2 million of improvements through FY 16. This project funded the synthetic turf fields at Montgomery Blair and Fairland in addition to many other projects that increased field availability.

Land Preservation, Parks, and Recreation Plan

The Department of Parks prepares a park and recreation needs analysis every five years (most recently completed in 2005) called the Land Preservation, Parks, and Recreation Plan (formerly called the Park, Recreation, and Open Space (PROS) plan). The plan points to the need for 123 additional athletic fields in the county by the year 2020, of which 73 are full-sized rectangular fields.

Building and Sustaining High Quality Natural Turf Grass Athletic Fields

The necessary ingredients to sustain natural turf grass cover on an athletic field fall into three primary categories; **construction, maintenance, and usage**. All three must be carefully controlled, or the natural grass surface will likely become unsatisfactory and unsuitable for organized sports play. In order to sustain a high quality stand of natural turf grass on a field, it must:

1) be designed and constructed properly,
2) be maintained regularly by qualified personnel, and
3) have usage controlled and limited.

If **any one** of the three factors is missing, natural turf cover on the field will deteriorate over time.

In an effort to explore best practices in high quality natural turf maintenance the work group followed the suggestion of the Montgomery County Safe Fields Coalition to interview the turf managers from the town of Branford Connecticut and St Mary’s College in southern Maryland. In addition, the work group contacted staff from the Maryland SoccerPlex to gain their insights into maintaining high quality fields in Montgomery County. The SoccerPlex professionally maintains several types of natural and artificial turf fields for competitive use.
Individuals from the Artificial Turf Work Group have spoken with and asked questions of Kevin Mercer, Certified Turf Grass Professional, Superintendent of Grounds, St. Mary’s College of Maryland. He indicated that the stadium field at St. Mary’s college is scheduled for 150 hours of use per year. This level of use indicated by Mr. Mercer is approximately half of the use of MCPS stadium fields and does not include college football competition. The work group members did not feel that the St. Mary’s college experience was comparable to what was being asked of natural turf stadium fields in Montgomery County.

Members of the work group also spoke with Alex Palluzzi, Director of Recreation, Town of Branford, Connecticut Parks and Recreation Department. While Parks staff heard of various success stories with organic fertilizers and compost, a main factor in maintaining the playability of town fields is control over use. The town Parks and Recreation staff have not maintained or tracked the hours of use on their fields, so it is difficult to obtain an apples-to-apples comparison of field use. The town staff maintains a calendar to block field time for leagues, and the leagues respect and honor the decisions of the town Parks staff in using the fields after inclement weather. In addition, the high school in Branford has an artificial turf field that is used for high school athletic activities. Montgomery County Parks staff has not learned of any new information that would bring new maintenance practices to the management of parks and school natural turf fields that would improve their durability to support the amount of use currently recorded on Regional Parks or MCPS stadium fields.

The work group discussed many issues regarding both natural and artificial turf with Mr. Jerad Minnick, Sports Turf Manager at the Maryland SoccerPlex in Germantown. Mr. Minnick is an expert in the field of turf field maintenance with experience with high quality natural grass fields for both Major League Baseball and Major League Soccer teams. Mr. Minnick also has extensive experience with the installation and maintenance of high quality natural and artificial turf fields at the Maryland SoccerPlex.

It is important to note that the establishment and care of turf grass across the country is a specialized discipline and is representative of a large industry. Professional sports teams, universities, golf courses, park & recreation departments, and the lawn care industry all depend on highly qualified professionals to deliver consistently high-performing turf grass surfaces for their intended purpose. Often, there is dire financial consequence associated with the failure of a natural turf surface. A primary resource for professionals involved with natural turf athletic fields is the Sports Turf Managers Association (www.stma.org). Several members within Parks staff responsible for the management of natural turf fields are members of this association and network regularly with other members of the local and national chapters about best practices for management of turf grass in the mid-Atlantic region. They stay current with the latest trends regarding field construction, turf grass cultivars, soil properties, drainage systems, mowing, fertilization, insect control, disease and fungus control, irrigation, topdressing, overseeing, aerating and the many other practices necessary to sustain high quality natural turf grass on an athletic field in the mid-Atlantic region. Based on the discussions with staff from Branford, Connecticut, St. Mary’s College, and the Maryland SoccerPlex, Parks and MCPS staff did not identify any “silver bullet” practices from these examples that would allow MCPS and Parks to achieve hours of use on natural turf that would be comparable to the hours of use possible on artificial turf. Note: This report goes into further detail regarding hours of use in the “Playability (Hours of Use)” Section later in this report.
Montgomery County Public Schools

Demands on High School Stadium Fields

Significant time, effort, and money are expended in trying to maintain safe, adequate playing conditions on MCPS high school stadium fields. This expenditure of resources consistently falls short of its goal, primarily because of the intensive wear and tear that result from so many sports and teams sharing high school stadium fields for competitive contests.

Twelve interscholastic athletic teams per high school share the stadium field for games. Including scrimmages, regular season games, and playoff games, approximately 95 contests will be conducted yearly on each of the 25 MCPS high school stadium fields in the fall and spring seasons—2,375 contests system-wide. The twelve school teams that share the stadium field at most MCPS high schools include varsity and junior varsity teams in football, boys' and girls' soccer, boys' and girls' lacrosse, and field hockey. In addition, stadium fields accommodate performances by marching bands, pom-poms, cheerleaders, flags, and majorettes.

A result of the intense use is that stadium fields do not have the opportunity to regenerate growth. High school athletic seasons occur in fall and spring, prime growing seasons for cool weather natural turf grass. With considerable cost and effort, schools can get fields to rebound to some extent at season’s end in preparation for the next season. However, fields degenerate at a quicker pace the next season because the grass did not have the proper amount of time or weather conditions to regenerate growth and establish a strong root system. After a game is played in wet or adverse conditions, the field is often damaged, its condition rendered unplayable at best, ruined at worst. Providing that funds are available, the field is resodded or renovated after the season ends, and the expensive cycle begins anew.

At the same time, the growing numbers of community groups, already desperate for field space, do not have access to high school stadium fields that feature lights for late-evening practices and games. Through the use of its artificial turf fields at Richard Montgomery and Walter Johnson high schools MCPS has created opportunities for additional playing time for community groups on a high quality field and help to meet the increasing demands for using high school stadium fields.

Off-Campus Practices

There is a major shortage of rectangular outdoor practice facilities at MCPS high schools. Practice fields are used every day throughout the fall and spring, and their condition are generally sub-standard. Moreover, because of limited field space, students on 125 MCPS athletic teams who use rectangular fields must drive off-campus on a daily basis in order to practice. Many of these students do not have cars and many are too young to drive. Safe transit to practice is an issue. In addition, students practicing off campus lack a nearby facility in which to take refuge in the event of sudden severe weather.

An important advantage of artificial turf fields is that they allow all teams that use rectangular fields to conduct practices on-campus. The stadium field becomes a practice facility as well as a game facility, and teams can stagger practices in a fashion that allows teams to remain on-campus.

A summary of concerns associated with teams practicing off-campus include:

• Transportation—Nearly 2,500 students are driving with other students off campus on a daily basis. The prospect of accidents is a concern.
• Field Conditions/Injuries—Whereas attention has been focused on the adverse field conditions of MCPS stadium fields, practice facilities are generally much worse, especially at off-campus sites that are not maintained, lack irrigation, and are used every day. Practice fields are frequently very hard, rock-laden, and have uneven tufts and divots.

• Severe Weather—Sudden storms are a significant source of concern for off-campus practices. When practicing on-campus, students can be brought into the building when severe weather suddenly appears. For off-campus practices there are limited opportunities for students to find shelter.

• Injuries—There are many potential injuries and emergencies that can arise, medical and otherwise, that require assistance. There are other coaches and athletic personnel located on campus to assist in an emergency situation. This important advantage is lost for teams that practice off-campus. All MCPS high schools have an Automated External Defibrillator (AED) located outside, adjacent to practice facilities, in case of an emergency. An AED is not available at off-campus sites.

• Supervision—It is much easier to supervise students at the high school facility, where there are more faculty and staff than at off-campus sites. Supervision concerns include students arriving at the off-campus site at staggered times, in advance of the coach.

Other issues with off-campus practices include:

• Each of the 125 teams that practice off-campus practiced an average of 44 times over the season, a total of 5,456 off-campus practices.
• Each team had an average of 20 students, 2,480 total students.
• An off-campus practice requires approximately two extra miles of daily driving to get to and home from the off-campus site.
• Estimating two students per car, approximately ten cars travel two miles on 5,456 occasions to take students to off-campus practices at 22 high schools—approximately 109,210 total miles.
• Assuming the average car uses approximately 22.4 miles per gallon (per EPA 11/17/2010 assumptions for 2009 average vehicle fuel economy), approximately 4,875 gallons of gasoline are consumed annually to transport students to off-campus practices.
• According to USEPA calculators, the gasoline used results in approximately 43.3 tons of carbon dioxide emissions each year. (http://www.epa.gov/cleanenergy/energy-resources/calculator.html#results)
• Middle and elementary schools frequently voice concern that having high school teams practice at their facilities is disruptive—practices at elementary school sites often begin before school is dismissed. High school teams prefer to practice relatively soon after school for a multitude of reasons, including that it allows sufficient time for homework.
• Storage—transporting equipment such as practice balls, portable goals, cones, etc., to off-site practices on a daily basis is a major inconvenience.

Equity Issues
The current state of Montgomery County Public Schools (MCPS) high school stadium fields varies greatly across the system. The standard field for MCPS high schools is a native soil field with bluegrass or fescue turf. Some schools, with substantial booster club support, have been able to install Bermuda grass surfaces that require costly annual maintenance contracts. However, most MCPS high schools do not have the financial support from their booster clubs to fund a maintenance contract for a Bermuda grass field, creating a distinct inequity among schools. The conditions of stadium and practice fields are easily the largest factors that differentiate MCPS high school interscholastic athletic programs. Athletic programs are relatively similar in most other respects, including
uniforms, officials, and safety equipment. There is a need to provide the same game and practice conditions for all 25 MCPS high schools.

Also, because of inadequate field conditions on the stadium field, field hockey teams do not compete on the stadium field at approximately half of the MCPS high schools, creating an important Title IX issue relating to equal access to facilities. Field hockey teams in one-half of the schools do not have equal opportunity to compete in the school’s premier athletic facility.

The inequity in field conditions is most pronounced when comparing practice facilities. Practice facilities at schools that lack the financial means for continuous maintenance is far inferior to schools with more abundant financial means.

Cost of Maintenance

Data compiled for the 2009-2010 school year indicates that the 25 MCPS high schools spent an average of $22,000 to maintain their natural grass fields. However, a closer look at this figure reveals the inequity that exists among MCPS high schools, and also reveals a more realistic estimate for the cost associated with proper maintenance of a high-use athletic field. Briefly, most high schools lack the funds to install and maintain the more expensive Bermuda grass fields. Yet Bermuda surface fields are clearly the fields that are in the best condition.

Though the average field maintenance cost for the 25 MCPS high schools was $22,000, the seven MCPS high schools with the highest annual athletic income for the 2009-2010 spent an average of $45,400 for field maintenance. Six of these seven schools have Bermuda grass surface fields.

In contrast, the 15 high schools with the lowest annual athletic income for 2009-2010 spent an average of $13,400 for field maintenance (Montgomery Blair, Walter Johnson, and Richard Montgomery high schools with artificial turf fields, are not included in this calculation). The disparity between schools is clear. It is also clear that most schools spend far below what is required to maintain a quality stadium field.

Cancellations

Several hundred MCPS games are cancelled or postponed annually because of the condition of natural turf fields. Playing a game on a wet field can ruin the field for the season, rendering the field unplayable, and resulting in extremely expensive repairs. It does not necessarily have to be raining for a game to be cancelled or postponed - one sustained rainfall can cause a field to be shut down for many days.

Regular season games are not the only rain-related cancellations that are of concern. Rain also causes hundreds of practice adjustments and cancellations in the course of a year. Practice cancellations and adjustments seriously disrupt student schedules and can have an effect on student conditioning.

Rain-related game and practice cancellations and adjustments have a significant effect on schools, students, parents, game officials, bus drivers, booster clubs, and many others. The adverse effects are not only financial, but they also wreak havoc on the day-to-day lives and routines of many people. Cancellations also place schools that do not have artificial turf stadium fields at a decided competitive advantage.

Approximately 30 games at each high school, 750 games system-wide, will be cancelled or postponed in a typical year that could have otherwise been played on an artificial surface field. Similarly, approximately
120 practices per school, 3,000 practices system-wide will be cancelled or disrupted each year because of rain.

A summary of adverse consequences associated with weather-related game and practice cancellations include the following:

1. **Financial**
 - Gate Receipts – Gate receipts are collected for all events conducted on the stadium field. Approximately 10 percent of 750 MCPS stadium field contests that are cancelled each year will not be rescheduled, resulting in annual lost gate receipt income of approximately $35,000.
 - Referees – Approximately 50% of the 750 games that are cancelled each year on stadium fields are cancelled after teams and referees have arrived on site, an annual expense of about $50,000.
 - Transportation – There are expenses associated with obtaining a second bus for rescheduled games. A bus costs about $140 per contest, resulting in an additional annual expense of about $52,000.

2. **Game Preparedness and Athletic Conditioning**
 - It is important that students practice on a regular basis. Regular, consistent practices are necessarily for proper conditioning as well as for developing proper technique. Each team that shares the stadium field will have approximately ten practices cancelled or adjusted to a later time, 120 practices per high school, and 3,000 practices system-wide.

3. **Disrupted Schedules**
 - Cancellations and subsequent rescheduling of contests and practices have significant consequences on the schedules and quality of life experiences of thousands of students and their parents.
 - When rain causes practices to be rescheduled for the gym, practices are staggered so that several teams may conduct practices. Often the last team does not end practice until 9:00. Generally, students do not know in advance that their practice time will be adjusted, creating conflicts and disruptions, including homework, dinner, baby-sitting siblings, finding a way to go home and return for practice, etc.
 - Rain adjustments cause significant hardships for parents. Athletic game schedules are posted in late July. Many parents will begin planning and arranging their personal and work schedules as early as late July according to the posted schedule.

4. **Competitive Disadvantage**
 - Cancellations create inequities resulting in competitive advantages for some schools/teams. Teams achieve higher seeds in playoffs according to their regular season record. Teams that have an artificial turf field have a distinct advantage over other schools. Not only do they have fewer game cancellations, but also they can practice and prepare consistently without interruption.

High School Stadium Fields with Artificial Turf

For Richard Montgomery, Montgomery Blair, and Walter Johnson high schools, there are many benefits associated with artificial turf on their stadium fields. These benefits for both high school and community groups include:
• Providing safer, more consistent, and more competitive surfaces for hundreds of MCPS and community teams.

• Providing safe, on-campus practice areas for MCPS athletic teams, and freeing up off-campus practice fields for community use.

• Providing community teams and community groups access to high quality lighted fields that helps to address the documented rectangular field shortage in the county.

• A greater degree of compliance to Title IX. Field hockey contests are not played on the stadium field at approximately half of the MCPS high schools because of unsuitable field conditions.

• Minimal cancellations. Prevailing weather conditions in the fall and spring force many cancellations, disrupting parents’ as well as students’ schedules. The only weather conditions that would cause a postponement on artificial turf fields would be lightening or abnormally severe weather.

• Significant savings in maintenance. Savings include not only seed, grass, fertilizer, and water, but also an enormous savings in time and effort by school staff and parent volunteers.

• Physical education classes having access to a safe, all-weather surface for activities during the school day for more than half of the school year.

• Reducing the amount of fertilizer, pesticides, and herbicides potentially reaching the Chesapeake Bay. Much attention has been focused on conserving resources and reducing pollutants reaching the Chesapeake Bay. Artificial turf fields require no fertilizer, pesticides, herbicides, or water. They also do not need to be mowed, avoiding another significant pollutant from lawnmower exhaust.

• Creating a greater degree of equity among high schools. The most immediate, visible difference among school athletic programs is the condition of outdoor practice facilities and stadium fields. Schools located in comparatively affluent areas of the county tend to have stadium fields and practice fields that are far more attractive and that are in far better condition than fields in less affluent areas.

• Creating greater opportunities for physical activities for youths. Childhood obesity is a serious community problem. Because of the paucity of available fields, there are significant limitations on the time available for youth to participate in community field activities.

Injuries and Field Consistency in Natural and Artificial Turf Fields
Comparing artificial turf fields to healthy, vibrant, high quality natural grass fields reveals the two are very close from an injury data perspective. In a five-year intensive study, Meyers and Barnhill (2004) found that while minor and substantial football injuries were slightly more prevalent on artificial turf fields, severe injuries were more prevalent on natural grass fields. Similarly, while there was a greater rate of injuries that resulted in zero days of missed practice or playing time on artificial turf fields, the rate of injuries that resulted in one-to-two days of missed time, and 22 days or more of lost time, were greater on natural grass fields. There were more muscle strains on artificial turf fields, but more ligament tears and concussions on natural grass fields.

Available studies and data do not support that athletes playing on a high quality artificial turf field are fundamentally more or less prone to injury than those playing on a high quality natural grass field. However, the studies that have been done primarily compare the injury data for artificial turf fields compared to natural grass
fields that are in ideal condition. Few of the 25 MCPS stadium fields would fit the description of a natural grass field in ideal condition, and none would qualify for comparison at midseason or season’s end.

Perhaps the greatest safety advantage of artificial turf fields over typical natural grass fields is their consistency. From a player injury perspective, artificial turf fields compare favorably to a high quality natural grass field in good condition and under optimum weather conditions. However, as weather conditions and field conditions become less than optimal, the safety advantages of artificial turf fields increase significantly. They are not as slippery as natural grass fields in wet conditions, they do not freeze in cold weather, and they do not become hard in dry or drought conditions. They do not develop divots, high spots, and low spots. In short, artificial turf remains consistently uniform, with good traction, no matter what type of shoe. The condition of artificial turf fields is not contingent on expensive and time-consuming maintenance, the extent of their use, or prevailing weather conditions.
Playability (Hours of Use)

Comparing the Potential Hours of Use of Natural Grass and Artificial Turf Stadium Fields

A primary reason both Parks and MCPS support the construction of artificial turf fields is the increased hours of use possible with an artificial turf field compared to a high quality natural grass field. These increased hours of use are achieved without risking degradation of the field. In addition, as noted earlier, even under limited hours of use, natural grass fields can suffer major damage from intensive play, especially when play occurs during or immediately after storm events.

In a comparison of natural turf fields and artificial turf fields, it is important to take into consideration hours of use when considering lifecycle costs, as discussed in the next report section, as well as when considering operational and environmental impacts.¹

A February 2010 study “Review of the Impacts of Rubber in Artificial Turf Applications” by Rachel Simon of the University of California, Berkeley (Prepared For: The Corporation for Manufacturing Excellence (Manex) Full text available at http://www.fieldturf.com/images/downloads/UC_Berkeley_-_Review_of_the_Impacts_of_Crumb_Rubber_in_Artificial_Turf.pdf) provided this summary of differences in hours of use between natural and artificial turf fields as identified by various sources and prior studies:

“The Synthetic Turf Council (2008), an artificial turf advocacy group, estimates that natural fields provide 80-816 hours of play in a three-season year, as compared with 3,000 hours for synthetic turf. Kay and Vamplew (2006) offer an alternative estimate with approximately 300 hours of play time for natural grass, 800 for reinforced turf, and 3,000 for artificial turf. James and McLeod (2008) calculate the usable hours of synthetic turf to be closer to 2,000 hours per year on average, with a range from 450 to 4,200 hours. They also note that the typical weekly hours of use for synthetic turf pitches were 44 hours, as compared to 4.1 hours for natural turf.”

While these ranges all differ, they all point to significantly more hours of use with artificial turf fields. For purposes of this report, the staff work group looked at data specific to natural and artificial turf fields in Montgomery County to provide a more relevant and specific assessment of hours per use for different field types.

Artificial Turf Hours of Use

Fortunately, the maximum amount of potential use for the three existing high school stadium artificial turf fields can easily be defined based on their respective warranties (all from Fieldturf Tarkett). The Montgomery Blair High School warranty is presented in Appendix B and includes a specific provision that, “Normal and ordinary use is considered as usage up to 3000 hours per year of regular play…”

For actual hours of use the staff work group looked at annual permit experience for artificial turf fields at Montgomery Blair High School and Richard Montgomery High School (which have multiple years of actual use), and then added in estimated use by MCPS for team games and practices as well as physical education

¹ For instance, even under the most conservative assumptions in this section, an artificial turf field provides hours of use equivalent to approximately 3 natural grass fields. In other words to achieve the same programming benefit of one artificial turf field, three natural turf fields would have to be built and maintained.
programs during the school day. In total, estimated annual hours of use for each field is 2,300 hours. In both cases, community use is approximately 1,000 hours per year. Estimates for team practices (400 hours per year) and team games (300 hours per year) are based on typical team schedules at the various high schools. Physical education programming (600 hours per year) is based on discussions with athletic directors about how the current artificial turf fields are utilized during the school day.

To estimate hours of use at a Parks artificial turf field, the staff work group assumed a total of 1,000 hours of community use that is currently being achieved at the Montgomery Blair High School field. The other uses noted at the school stadium fields are not assumed here.

The staff work group also obtained information from the Maryland SoccerPlex regarding hours their three artificial turf fields are open and utilized annually. The artificial turf fields at the SoccerPlex are used about 1,800 hours per year.

Natural Turf Fields

In most cases, MCPS high schools restrict the use of stadium fields to team games; approximately 300 hours per year. However, some schools with Bermuda grass native soil fields allow some limited physical education programming. In these cases, the fields are used a total of an estimated 400 hours per year.

For Parks, the staff work group looked at the programming experience for the Ridge Road lighted natural turf rectangular field (a cool season native soil field). This field is utilized approximately 500 hours per year. However, according to Parks Staff the field often exhibits severe wear patterns. Therefore, while the hours of use obtained are greater than the hours at an MCPS field, the quality of the field is far less. Therefore, in comparing the Ridge Road field to an artificial turf field or a high quality sand base Bermuda field one must take into account the field condition and the reduced fee one can charge for the field as a result. Revenue generation is discussed in the next section of this report.

The Maryland SoccerPlex limits usage on its natural grass fields to between 400 hours (for its Kentucky bluegrass fields) and 600 hours per year for its Bermuda grass fields. It is important to note that the Maryland SoccerPlex does not program football (the most damaging sport for natural grass fields), has a very different scheduling profile (year-round but less intensive use), and an on-site centralized maintenance program run by expert professional staff.

Hours of Use Comparison Chart

The following chart presents four ways to calculate the difference in hours of use of an artificial turf field versus a natural turf field.

1. The potential hours of use of an artificial turf field are assumed to be 3000 hours per year based on staying within the warranty coverage provided for in the Montgomery Blair High School warranty. The top portion of the chart shows the total hours the MCPS artificial turf fields could theoretically be open and then deducts hours to take into account lack of MCPS use in cold-weather months, reduced use during peak hot weather times, and other miscellaneous hours of non-use even if one were to achieve a maximum 3000 hours of use. This number is then compared to MCPS’ current standard stadium field use (300 hours per year) and then also to a higher usage rate (600 hours) that might be possible with a higher quality field.
2. The hours of use of an artificial turf field are calculated based on actual hours of use of MCPS’ artificial turf fields at Montgomery Blair High School and Richard Montgomery High School (approximately 2,300 hours per year for each field as mentioned earlier). This number is then compared to MCPS’ current stadium field use (300 hours per year) and then also to a higher usage rate (600 hours) that might be possible with a higher quality field.

3. The hours of use of an artificial turf field are calculated based on the potential hours of use (3,000 hours) and the projected hours of use for an exclusive Parks field (no high school use). These numbers are then compared to actual hours of use (500 hours) Parks obtains from a typical lighted full-size rectangular field (Ridge Road Park for example). Parks staff has noted that in the Ridge Road Park example, the field often exhibits severe wear patterns, even at this limited level of use.

4. The hours of use of an artificial turf field are calculated based on potential hours (3,438) and actual hours (1,800) of programming of each of the Maryland SoccerPlex artificial turf fields. These numbers are then compared to the hours of use for the Maryland SoccerPlex’s natural grass fields (500 hours for Kentucky bluegrass and 600 hours for Bermuda grass).

Artificial Turf Field Annual Hours of Use Calculation for MCPS and Parks Ballfields

<table>
<thead>
<tr>
<th>Potential Hours of Programming Based on Current MCPS Schedule</th>
<th>Hours</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hours Available Annually</td>
<td>4,928</td>
<td></td>
</tr>
<tr>
<td>Subtract for limited cold weather use* (1,080)</td>
<td></td>
<td>Community Use only. No MCPS practices or games assumed for 120 days.</td>
</tr>
<tr>
<td>Subtract for no use during peak heat hours (480)</td>
<td></td>
<td>Exclude an average of 6 hours per day for 80 days.</td>
</tr>
<tr>
<td>Subtract for other potential unavailable times (368)</td>
<td></td>
<td>Reduce usage to 3000 hours (max allowed under the Blair/RM HS warranties)</td>
</tr>
<tr>
<td>Net Hours Programmable</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Ratio to Current MCPS Natural Grass Fields</td>
<td>10.0 to 1</td>
<td>Assumes 300 hours of use maximum per year on natural grass fields</td>
</tr>
<tr>
<td>Ratio to Improved MCPS Natural Grass Fields</td>
<td>5.0 to 1</td>
<td>Assumes 600 hours of use maximum per year on natural grass fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual Programming Experience at Blair HS and Richard Montgomery High School</th>
<th>Hours</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Use for games</td>
<td>300</td>
<td>Current usage for HS stadium fields</td>
</tr>
<tr>
<td>High School Use for team practices</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Physical Education Class Use</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Current Usage at Blair HS and RM HS</td>
<td>2,300</td>
<td></td>
</tr>
<tr>
<td>Ratio to Current MCPS Natural Grass Fields</td>
<td>7.7 to 1</td>
<td>Assumes current 300 hours of use per year on natural grass fields</td>
</tr>
<tr>
<td>Ratio to Improved MCPS Natural Grass Fields</td>
<td>3.8 to 1</td>
<td>Assumes current use could be expanded to 600 hours of use per year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential and Projected Programming for Artificial Turf Fields at Parks Facilities</th>
<th>Hours</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Use</td>
<td>1,000</td>
<td>Assumes to be similar to community use experience at MCPS AT fields</td>
</tr>
<tr>
<td>Ratio to Current Parks Natural Grass Fields</td>
<td>6.0 to 1</td>
<td>Assumes current 500 hours of use per year on natural grass fields</td>
</tr>
<tr>
<td>Ratio to Higher Quality Parks Natural Grass Fields</td>
<td>5.0 to 1</td>
<td>Assumes current use could be expanded to 600 hours of use per year</td>
</tr>
<tr>
<td>Ratio to Current Parks Natural Grass Fields</td>
<td>2.0 to 1</td>
<td>Assumes current 500 hours of use per year on natural grass fields</td>
</tr>
<tr>
<td>Ratio to Higher Quality Parks Natural Grass Fields</td>
<td>1.7 to 1</td>
<td>Assumes current use could be expanded to 600 hours of use per year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours of Programming at the Maryland Soccerplex</th>
<th>Hours</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours Programmable</td>
<td>3,438</td>
<td></td>
</tr>
<tr>
<td>Ratio to Current Natural Grass Fields</td>
<td>6.9 to 1</td>
<td>Assumes 500 hours of use max. per year on Kentucky bluegrass native soil fields.</td>
</tr>
<tr>
<td>Ratio to Improved Natural Grass Fields</td>
<td>5.7 to 1</td>
<td>Assumes 600 hours of use max. per year on Bermuda grass fields.</td>
</tr>
<tr>
<td>Actual Programming</td>
<td>1,800</td>
<td></td>
</tr>
<tr>
<td>Ratio to Current Natural Grass Fields</td>
<td>3.6 to 1</td>
<td>Assumes 500 hours of use max. per year on Kentucky bluegrass native soil fields.</td>
</tr>
<tr>
<td>Ratio to Improved Natural Grass Fields</td>
<td>3.0 to 1</td>
<td>Assumes 600 hours of use max. per year on Bermuda grass fields.</td>
</tr>
</tbody>
</table>

*AT fields are sought after by private groups during cold weather months, since natural grass fields are often not playable at these times.
**Includes weekend days & nights year round, weeknights (non-summer months) and weekdays and weeknights (summer months)
Findings:

1. At the 3,000 hour cap, the hours of use of an artificial turf field would be ten times the current usage (300 hours) of MCPS natural grass stadium fields. If natural grass stadium field maximum usage could be doubled to 600 hours per year, the ratio for maximum potential use would still be five times that of natural grass stadium fields.

2. The actual ratio of usage at the Montgomery Blair High School & Richard Montgomery High School fields (an estimated 2,300 hours per year) is 7.7 times the current usage of MCPS' natural grass stadium fields. If natural grass stadium field usage could be increased to 600 hours per year, the ratio would still be 3.8 times more usage on artificial turf stadium fields.

3. A Parks artificial turf field would be utilized less than a schools field (no school use during the day). However, the community use alone would be about twice as much as is obtained now with a native soil field that exhibits severe wear patterns. If natural grass stadium field usage could be increased to 600 hours per year, the ratio would be about 1.7 times more usage on artificial turf stadium fields. As noted in the chart, with an artificial turf field, Parks could greatly increase its programming (from 1,000 to 3,000) hours. Given the wear exhibited at its natural grass fields even at limited hours, increases of use at its natural grass fields would be problematic.

4. The Maryland SoccerPlex's artificial turf fields are utilized about 1,800 hours per year. This compares to approximately 500 to 600 hours of programming at its natural grass fields resulting in ratios of 3.6 to 1 and 3.0 to 1 respectively. As noted for the Parks fields, the Maryland Soccerplex has additional potential capacity at its artificial turf fields that it does not have at its natural grass fields (due to concern over field degradation).
Life-Cycle Cost Evaluation

A key factor in deciding whether to build an artificial turf field or a natural turf field is the comprehensive lifecycle costs (construction, maintenance, revenue, rehabilitation, replacement) including the cost per hour of use. The cost per hour of use is based on the estimated annual hours of use one can expect from the different field types based on the programming expected for the field.

The staff work group chose four natural grass field types to compare to a typical artificial turf field. The four natural grass field types consist of two different field bases (a 10 inch sand base and a native soil base) and two different grass types (Bermuda grass and Cool Season/Kentucky Bluegrass). The artificial turf field is assumed to be a polypropylene carpet with a crumb rubber infill.

Sand Base versus Native Soil Fields

A sand-base field is built on a 10”-12” deep profile of sand. Under the sand is a 4” layer of pea gravel that is lined with drainage tile on 15’ centers to move the water that drains through the sand and into the gravel away from the field. Sand-base fields cost substantially more to build than native-soil fields but provide two major advantages:

- Fewer Rain Outs: Water drains through the profile quickly, leaving no standing water and eliminating puddles or “muddy” field conditions.
- Increased Hours of Use: A sand base is a mix of specific grades, angles, and sizes of sand. Because of the mix, sand will not “compact” nearly as quickly as a native soil field will from foot and mechanical traffic. Since compaction is a large factor in a field thinning out and dying, a sand base allows more play than a “native soil” field before it begins to thin out.

A “native soil” field is a field constructed of the soil profile native to the area where the field was built. Soil amendments can be added to “native soil” to make it perform better for sports fields. Native soil will not give the performance on drainage and compaction that sand will (unless the native soil happens to meet the particle size analysis that is specified for a “sand base”). A native soil field is significantly less expensive than a sand-base field, but does not provide the same advantages of a sand-base field noted above.

Bermuda Grass versus Cool Season Grass Fields

Bermuda grass is a “warm season” type grass that is being grown in areas as far north as Philadelphia, PA. Bermuda grass is native to the warm weather climates of the south, but genetic and breeding technology has allowed the grass to be successfully used further north into the climate region of Maryland. The grass grows actively during the warm weather months of June through September. Bermuda grass turns brown and is dormant from October through mid May. Bermuda grass takes small amounts of pesticides to maintain, requires less fertilizer than “cool season” turf grasses, but requires more frequent mowing and lower mowing heights to maintain a high quality stand. Bermuda grass is more problematic in northern parts of the country because the cold winters will cause the grass to “winter kill”.

Cool season turf grass grows actively during the months of April through June, then September through mid-November. Cool season turf varieties for sports fields are typically Kentucky bluegrass and mixed grasses including Kentucky bluegrass with Fescue and/or Ryegrass. Cool season turf grass grows slower than Bermuda grass, requires more fertilizer and more pesticides, but requires less mowing. Cool season turf
grass is limited in its use much further south because the high temperatures of summer cause the turf to go
dormant and raises the potential for disease killing out large amounts of turf.

Current Examples of Fields in Montgomery County
The Staff Work group believes the closest “apples to apples” comparison in terms of field quality between
natural and artificial turf fields is a sand based Bermuda grass or sand based Kentucky bluegrass field to a
current generation artificial turf field. However, the staff work group also included two native soil field
examples in its comparison (Bermuda and Cool Season) since both types of fields are currently in use in
Montgomery County by Parks, the Maryland SoccerPlex and/or MCPS.

M-NCPPC Parks has 18 regional/recreational park rectangular fields. Thirteen of these fields are bluegrass or
fescue on native soil, three are Bermuda grass fields on native soil, and two fields are artificial turf with
crumb rubber infill.

The Maryland SoccerPlex manages 20 rectangular fields. Fourteen of these fields are Kentucky bluegrass on
native soil, one field (the championship stadium field) is Kentucky bluegrass on a sand base, two fields are
Bermuda grass on native soil, and the remaining 3 fields are artificial turf with a crumb rubber infill.

MCPS has 25 stadium fields (including Montgomery Blair High School). Twelve of these fields have bluegrass
or fescue on native soil. Ten fields have Bermuda grass on native soil and three stadium fields are artificial
turf with crumb rubber infill.

Comparison of Natural and Artificial Turf Athletic Fields – Major Assumptions
- A high quality playing surface is to be provided, sufficient for high school and adult level competitive
team sports.
- Usage is controlled at all times (i.e. the field is secured; there is no walk on usage).
- The field is designed and constructed by qualified professionals according to industry standards.
- The field is maintained by qualified professionals year-round according to industry standards. The
 maintenance practices are consistent with the hours of use assumed for each type of field.
- The hours of use for each of the natural grass fields is capped (see previous report section) to avoid
degradation of a field from overuse. For this analysis, hours of use assumptions are based on the
 actual hours of play experienced at MCPS stadium fields, Parks Fields, and the Maryland SoccerPlex
 fields.
- The artificial turf field comparison for MCPS assumes annual hours of use based on actual hours
 programmed at the existing artificial turf fields at Montgomery Blair High School and Richard
 Montgomery High School. As previously noted, the hours of use could potentially be expanded to
 as much as 3,000 hours per year without voiding existing warranties for those fields.
- The artificial turf field comparison for Parks fields assumes 1,000 hours of community use at the
 artificial turf field.
- A 20 year time horizon was chosen for the lifecycle analysis. This time period is long enough to
 assume two carpet replacements for the artificial turf field and one major renovation of each
 natural grass field.
- **Construction Costs (see Appendix D for cost details)**
For the artificial turf fields, costs are an average of actual costs incurred for the Montgomery Blair, Richard Montgomery, and Walter Johnson high school stadium fields. A substantial allowance ($300,000) is included for storm water management for the artificial turf fields. However, these and other costs will depend greatly on specific site conditions and could be less costly for MCPS, since MCPS’ stadium fields are constructed as part of a larger school modernization project.

For the natural grass fields, construction cost estimates are based on information provided by staff of the Maryland SoccerPlex.

- **Maintenance Costs** - The staff work group asked staff of the Maryland SoccerPlex to provide typical maintenance practices to assume to maintain a high quality playing surface for the different types of fields. Actual maintenance practices will vary based on specific field conditions, weather patterns, resources available, labor costs, the knowledge and skills of the turf manager, and other factors. Please see Appendix C for a summary of life-cycle cost maintenance assumptions. For purposes of this analysis, the following annual maintenance costs were derived based on knowledge of best practices by SoccerPlex staff and actual costs incurred by MCPS currently for its various fields.
 - Cool season grass native soil field: $25,000 per year
 - Bermuda Grass native soil field: $45,000 per year
 - Sand Base Field (Bermuda or Kentucky Blue grass): $50,000 per year
 - Artificial Turf Field: $10,000 per year

Lifecycle Cost Analysis (see Appendix D for more details)
Below are two summary charts (one for MCPS and one for Parks) showing the 20 year lifecycle cost and per hour cost for each type of field. The only difference between the charts is the 20 year revenue assumption for the natural grass fields. MCPS does not currently permit its stadium fields (whether Bermuda or cool season grass) for outside use and the lifecycle cost summary assumes there would be no revenue collected from any future natural grass fields constructed. The revenue numbers for Parks assume that the sand base fields could be permitted at hourly rates comparable to the rates currently charged for artificial turf fields by CUPF. Hourly rates for the native soil fields are assumed to be the same as Parks currently charges for its regional rectangular fields.

2 Cool season annual maintenance cost based on a full-service contract. For Bermuda grass field on native soil, the cost is based on average contract costs incurred for Churchill, Quince Orchard, and Walt Whitman high schools. For sand base fields, costs are based on discussions with staff from the Maryland SoccerPlex. Artificial turf field costs are based on annual contract costs from an artificial turf vendor.
Findings – MCPS Stadium Fields:

- Artificial turf fields cost approximately twice as much to construct as either of the sand base fields.
- The least expensive field, by far, over a 20 year period is the cool season grass native soil field.
- However, when taking into account revenue generated, the net cost of artificial turf fields is less than the cool season grass native soil fields and far less than the other field types.
- Because of the high up-front cost for artificial turf and sand base natural turf fields, a net present value calculation increases the net costs of these fields (over a 20 year time horizon) in comparison to the native season natural grass fields. However, the sand base fields still have a much higher net cost than the artificial turf field.
- Despite the higher up-front and future replacement costs, an artificial turf MCPS Stadium field provides a substantially lower net cost per hour of use than any of the natural grass options because of the substantially increased hours of use and additional revenue generated from that increased use.
- Assigning various discount rates to the hours of use partially reduces the hours of use cost disparity, but the artificial turf field still has a much lower cost per hour of use than all of the other fields.
Findings – Parks Fields:

- The lifecycle costs for the various fields are closer to each other than for MCPS, because all Parks fields are assumed to generate some revenue and the artificial turf field is assumed to be used fewer hours (only 1,000 hours of community use) compared to MCPS stadium fields (2,300 hours).
- When taking into account revenue generated, the net costs of all the field types are relatively close, with the cool season grass native soil field having the lowest net cost followed by the artificial turf field and the Bermuda grass sand base field.
- Because of the high up-front cost for artificial turf and sand base natural turf fields, a net present value calculation increases the costs of these fields (over a 20 year time horizon) in comparison to the native season natural grass fields.
- Despite the higher up-front and future replacement costs, an artificial turf field is much lower in net cost per hour compared to any of the natural grass options because of the many more hours of use, and the additional revenue generated.
- Assigning various discount rates to the hours of use makes the artificial turf field and the cool season native soil field comparable in per hour cost. The other fields are still more expensive per hour, primarily because of higher annual maintenance costs and lower overall revenue generation.
Public/Human Health Concerns

Summary
Environmental impact assessments and health impact assessments are formal processes through which the evaluation of our built environment and its impact on human health can be measured. These processes identify and examine potential health risks linked to the environment of concern.

In the absence of either an environmental impact assessment or a health impact assessment on the installation and use of artificial turf fields, the work group identified some of the areas of potential human risks that were raised during the compilation of information that forms this report. This is not a complete set of risks. A formal process would be required to identify and examine all the human health risks from all the artificial turf field materials under consideration. Such an analysis was beyond the scope and capacity of the Artificial Turf Work Group.

Due to the distinct physical characteristics of crumb rubber infill artificial turf systems, concern has been raised over potential adverse health effects related to use of these systems. The potential physical health effects associated with crumb rubber infill artificial turf systems include:

- chemical exposures
- heat-related illnesses
- abrasions/turf-burns
- injuries
- infections, and allergic reactions

The potential for chemical exposure was addressed in most of the literature and reports this committee found. The risk arises from the recycled crumb rubber infill that is part of the most common artificial turf systems. The composition of this crumb rubber is quite variable within and between manufacturers of both natural and synthetic rubbers including additives such as zinc, lead, sulfur, carbon black, polyaromatic hydrocarbons, and volatile organic compounds. Exposures of concern include physical contact through ingestion, inhalation, and dermal or ocular exposure.

Most of the literature reviewed by the committee also raised the issue of heat-related illnesses from use of artificial turf systems. Artificial turf surfaces are known to absorb heat to a greater degree than natural turf resulting in surface temperatures that can be much higher than the surrounding air. There are claims that the elevated temperatures increase the risk of heat-related illness and complaints of discomfort and actual burns. Please see the next section for a discussion of heat related issues.

The issue of the type and frequency of injuries on artificial turf compared to the frequency and type of those that occur on natural turf surfaces also came up in the literature. Many factors influence the rate of sports injuries, including the type of playing surface. The many kinds of artificial turf surfaces and changes in the products over the years have complicated the assessment of how the playing surface affects injury rates. Also, there are claims that the abrasiveness of artificial turf fibers may contribute abrasions or “turf burns”.

Concerns were noted in literature over the potential for bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA), due to the number of abrasions experienced on artificial turf surfaces.
Latex allergies related to contact with artificial turf surfaces that may have latex in their composition also were noted in literature. Latex allergens are found in tire rubber and players on these fields could be exposed.

The DHHS staff has provided the following comments regarding Artificial Turf:

“There are many considerations to weigh in selecting the material with which to construct athletic fields. DHHS is not equipped with the necessary specialized expertise to conduct an environmental and safety assessment of either the artificial or natural turf already in place or to determine what material to use in the future. If this type of assessment is sought, DHHS recommends the county seek outside consultation from an entity with expertise and demonstrated experience in the field. At a minimum, a meta-analysis of all studies should be completed to ensure a complete literature review in this area and it should be done by an entity with a proven topic expertise and track record.

The DHHS can assist Parks and MCPS in ensuring that policies and procedures that maximize the level of safe and healthy use and exposure related to athletic field use are based on sound scientific and public health merit and that the policies and procedures align with best public health practices to minimize risk.

There are various sources of information on materials that are used to construct athletic fields. Information is available from the natural turf and artificial industries, various government agencies at the federal and state level, academic research, as well as from advocacy groups. The compilation of articles and reports reviewed by the committee was limited to those materials that were easily accessible to the group from independent searches or by recommendations from other interested parties. The articles and reports compiled are not a comprehensive examination of all scientifically sound results-based information of proposed field materials based on the latest scientific research that weighs the strengths and limitations of the material, the evaluation methods or the applicability of the results to the specific conditions in Montgomery County under which the installation, maintenance, and exposures would occur.

A complete meta-analysis of all scientific research and literature available would be the recommended approach by DHHS to determine the level of health risk posed by each material type. Moreover, to fully understand the specific risks with materials installed in Montgomery County, objective testing of the materials used to compile the surfaces being proposed would be required. Outside of general guidance on proposed evaluation strategies and considerations identified from other jurisdictions, the evaluations are interesting, informative but are limited to the area studied in the evaluation.”

Synopses of the reports reviewed by the work group

Government Reports

United States Consumer Product Safety Commission

“CPSC staff evaluation showed that newer fields had no lead or generally had the lowest lead levels. Although small amounts of lead were detected on the surface of some older fields, none of these tested fields released amounts of lead that would be harmful to children.

Lead is present in the pigments of some synthetic turf products to give the turf its various colors. CPSC staff recognizes that some conditions such as age, weathering, exposure to sunlight, and wear and tear might change the amount of lead that could be released from the turf. As turf is used during athletics or play and exposed over time to sunlight, heat and other weather conditions, the surface of the turf may start to become worn and small particles of the lead-containing synthetic grass fibers might be released. The CPSC staff considered in the evaluation that particles on a child’s hand transferred to his/her mouth would be the most likely route of exposure and determined young children would not be at risk.

Although this evaluation found no harmful lead levels, CPSC staff is asking that voluntary standards be developed for synthetic turf to preclude the use of lead in future products. This action is being taken proactively to address any future production of synthetic turf and to set a standard for any new entrants to the market to follow.

As an overall guideline, CPSC staff recommends young children wash their hands after playing outside, especially before eating.”

United States Environmental Protection Agency

This study collected air, wipe, and material samples. The air samples were analyzed for particulate matter mass, metals, particulate morphology and 56 volatile organic analytes. The wipe and material samples were analyzed for total extractable concentrations of several metals and bioaccessible lead. The EPA report concluded:

“On average, concentrations of components monitored in this study were below levels of concern; however given the very limited nature of this study (i.e., limited number of components monitored, samples sites, and samples taken at each site) and the wide diversity of tire crumb material, it is not possible to reach any more comprehensive conclusions without the consideration of additional data.”

State of California

The goal of this study was limited to the assessment of inhalation and skin infection risks associated with the use of crumb rubber infill. Specifically the study looked at the potential for inhalation of volatile organic
compounds and particulates less than 2.5 microns in the air above the playing field. With respect to skin infections the study assessed the harboring of bacteria in the turf and potential for increased skin abrasions.

The study concluded no public health concern was identified with particulates suspended in the air above the playing field and although volatile organic compounds were detected above the artificial turf surface...

“exposures were below health-based screening levels, suggesting that adverse health effects were unlikely to occur in persons using artificial turf.”

Regarding skin infections, fewer bacteria were detected on artificial turf compared to natural turf on those fields tested. The rate of abrasions was two-to-three-fold higher for college soccer players competing on artificial turf compared to natural turf. It was concluded that the sum effects on the skin infection rate between the two types of turf could not be predicted from the data alone and additional studies were needed.

The report also acknowledged a number of uncertainties and data gaps remained that were not controlled in the studies.

City of San Francisco, CA

“The task force identified 11 environmental and health issues of public concern, and for which there was thought to be readily available research. Study teams, comprised of subject matter experts and park users, were assigned to review the research on each issue, synthesize the findings, discuss strengths and weaknesses of the research, assess the relevance of the research to San Francisco’s playfields implementation, and, identify suggestions and recommendations for Department staff to make to the Commission.”

In February 2008, the San Francisco Department of Health (SFDPH) summarized their review of several reports, studies, and documents relevant to assessing the potential for health risk associated with artificial turf and while often noting that additional research is recommended, they concluded,

“At this time SFDPH does not recommend a moratorium on the continued installation and use of artificial turf playfields in San Francisco. It may be helpful to perform air monitoring on artificial turf playfields in San Francisco during hot weather to help further assess relevant exposures to users in the breathing zone.”

State of Connecticut

This collection of studies explored the possible exposures when playing sports on artificial turf fields cushioned with crumb rubber infill. These studies found rubber is a complex mixture of various chemicals with some having toxic and carcinogenic properties. Exposure is possible, primarily via inhalation, given
that chemicals emitted from rubber can end up in the breathing zone of players and these players have high ventilation rates. Rainwater may leach chemicals from the rubber into underlying groundwater or nearby streams and there is a potential risk to surface waters and aquatic organisms associated with whole effluent and zinc toxicity of storm water runoff from artificial turf fields. These reports were peer reviewed by the Connecticut Academy of Science and Engineering and comments were incorporated into the final report.

With respect to the five fields tested in Connecticut the report concluded:

“Based upon these findings, the use of outdoor and indoor artificial turf fields is not associated with elevated health risks. However, it would be prudent for building operators to provide adequate ventilation to prevent a buildup of rubber-related VOCs and SVOCs at indoor fields. The current study did not evaluate new fields under hot weather conditions and so the potential for acute risks under this circumstance is another uncertainty. The current results are generally consistent with the findings from studies conducted by New York City, New York State, the USEPA and Norway which tested different kinds of fields and under a variety of weather conditions. Thus, it appears that the current results are reasonably representative of conditions that can be encountered at indoor and outdoor crumb rubber fields, although this tentative conclusion could benefit from the testing of additional fields.”

State of New York

This study focused on three areas: release of chemicals into surface and groundwater, air, and elevated surface temperatures. Laboratory based leaching studies suggested that crumb rubber may be used as an infill without significant impact on ground water quality. Field sampling studies were not fully completed at the time of the report and although they showed no impact on groundwater quality due to crumb rubber related compounds it was noted that the finding should not be considered conclusive due to the limited amount of data available. Ambient air sampling measured the chemicals and particulates in the air at two fields and did not raise concerns for health effects of players at those fields. It was noted that temperatures on the surfaces of synthetic fields was significantly higher than natural turf and those using the fields should take precautions to avoid heat related illness. The report did acknowledge that testing done under different conditions, using different methods or at different fields could yield different results.

“This comprehensive review of the available literature on the potential health effects of crumb rubber infill from synthetic turf fields has demonstrated that the major health concern from these fields is related to heat. Chemicals of Potential Concern (COPC) concentrations from the crumb rubber vary depending on the type of crumb rubber, the method of extraction used for analysis, and the media measured (crumb rubber, air, leachate). Eleven different risk assessments applied various available concentrations of COPCs and none identified an increased risk for human health effects as a result of ingestion, dermal or inhalation exposure to crumb rubber. However, additional air studies at synthetic turf fields as well as background air measurements would provide more representative

33
After a study of lead levels in twelve artificial turf fields in New Jersey, The New Jersey Department of Health and Senior Services concluded:

“Agencies that have installed, are installing, or plan to install artificial turf fields should ask vendors to conduct appropriate testing to determine the levels of potential contaminants in components of the turf, including the turf fibers and in-fill materials. If a field is found to have high lead levels, field managers can consider limiting access to the field, especially for the most vulnerable population of children under 7 years of age. As a precaution, until further guidance is available, custodians of all turf fields, but especially turf fields with nylon fibers, can implement the following recommendations, in addition to testing their turf field:

- Dust suppression, in the form of watering down the field, can be conducted before and after the field is being utilized,
- Encourage individuals who use the field to perform aggressive hand/body washing after playing on the field;
- Clothes that were worn on the field should be taken off inside out and washed separately.”

“The NJDHSS recognizes the growing public concerns about the safety of artificial turf fields, as well as the need for communities to provide for athletic and other recreational fields. Artificial turf fields are being installed in growing numbers around the country and in New Jersey. Health and safety concerns are being raised about these fields. These concerns are related to physical properties of the fields and potential chemical exposures from in-fill materials (especially crumb rubber from recycled tires) and the turf fibers.

There is a need for a comprehensive and coordinated approach to evaluating the public health risks and benefits of artificial turf fields. Several assessments have been conducted by researchers around the country. Available evidence suggests that there are no acute health risks due to use of artificial turf fields, and risks due to chronic and repeated exposure are unlikely. However, important gaps and uncertainties in our knowledge of the nature and magnitude of potential exposures and health risks remain.”

The Ridgewood Environmental Advisory Committee (REAC) is an independent volunteer committee, appointed by the village council, with experience and/interest in environmental issues. REAC appointed a subcommittee to investigate citizen concerns over the use of synthetic turf in a community park. REAC concluded that the synthetic surface at Maple Park did not pose any significant environmental, health, or human safety threat. “REAC’s assessment focused only on concerns, which may be applicable in Ridgewood and are specific to the synthetic “infill” turf field design at Maple Park.”
Non-governmental Literature

This document is a brochure prepared by the Turf Grass Research Center supporting the use of natural turf fields.

A report by an environmental firm on the human health and ecological risks from ground rubber in playgrounds and sports fields, and based on a review of studies from advocates and opponents to the use of crumb rubber. This report concludes no adverse human health or ecological health effects are likely to result from these reuses of tire materials. The report however acknowledges that while these conclusions are supported by existing studies or screening risk assessments, additional research would be useful.

This report explores the various aspects of crumb rubber and addresses some of the claims made by various researchers. This report concludes that crumb rubber and artificial turf have many traits that make it a beneficial choice for athletic surfaces.

“Generally safe application - Extensive research has pointed to the conclusion that these fields result in little, if any, exposure to toxic substances. A review of existing literature points to the relative safety of crumb rubber fill playground and athletic field surfaces. Generally, these surfaces, though containing numerous elements potentially toxic to humans, do not provide the opportunity in ordinary circumstances for exposure at levels that are actually dangerous. Numerous studies have been carried out on this material and have addressed numerous different aspects of the issue. For the most part, the studies have vindicated defenders of crumb rubber, identifying it as a safe, cost-effective, and responsible use for tire rubber.”

The summary and conclusions of the study are as follows:
“The Connecticut Agricultural Experiment Station study conclusively demonstrates that the tire crumbs and tire mulch release chemical compounds into the air and ground water. Thus, tire crumbs constitute a chemical exposure for humans and the environment.

It is clear that the recycled rubber crumbs are not inert, nor is a high-temperature or severe solvent extraction needed to release metals, volatile organic compounds, or semi-volatile organic compounds. The release of airborne chemicals and dust is well established by the current information. The Connecticut Agricultural Experiment Station research conclusively demonstrates that release can occur under ambient conditions experienced in the summer in Connecticut.

Those published health assessments that indicate de minimis risk should not be applied to the synthetic turf paradigm and may not be appropriate for playgrounds with open layers of recycled tire crumbs.

Health endpoints of concern are numerous, including acute irritation of the lungs, skin, and eyes, and chronic irritation of the lung, skin, and eyes. Knowledge is somewhat limited about the effects of semi-volatile chemicals on the kidney, endocrine system, nervous system, cardiovascular system, immune system, developmental effects and the potential to induce cancers.

There are still data gaps that need to be filled in and additional studies are warranted.

It is prudent to conclude that there will be human exposures to chemicals released during the use of synthetic turf fields.

The excess amount of zinc in the rubber tire mulch makes it unacceptable to be used in gardens.”

Finding – Parks and MCPS believe that reliance should be placed on the various government studies referenced above that have looked at the human health issues associated with artificial turf fields (and crumb rubber infill in particular) and have not found levels of concern that warrant avoidance of the construction of new artificial turf fields with crumb rubber infill.
Artificial Turf Heat Concerns

Background

One characteristic of artificial turf fields that has been well documented is the higher field temperatures on artificial turf fields compared to natural grass fields under similar weather conditions. These conditions may vary depending on the color and other specifications of the artificial turf carpet and the type of the infill material used.\(^3\)

A New York State Department of Health review (August 2008) of artificial turf (http://www.health.state.ny.us/environmental/outdoors/synthetic_turf/crumb-rubber_infilled/fact_sheet.htm) provides a good summary of findings regarding the heat effect of artificial turf utilizing crumb rubber infill:

“Synthetic turf fields absorb heat, resulting in surface temperatures that are much higher than the temperatures of the surrounding air. In June 2002 at Brigham Young University (BYU) in Utah, the average surface temperature on a synthetic turf field was reported to be 117°F while the average surface temperatures on natural turf and asphalt were 78°F and 110°F, respectively. A maximum surface temperature of 200°F on the BYU synthetic turf field was reported. A turf grass specialist at the University of Missouri reported measuring an air temperature of 138°F at "head-level" height on the university's artificial turf field on a sunny 98°F day. The surface temperature of the field was reported to be 178°F. A study conducted at Penn State University measured surface temperatures on experimental plots of nine different types of infilled turf. Temperature measurements were made on three occasions. The average air temperatures reported were 79°, 78°, and 85°F. The corresponding average surface temperatures reported for the synthetic turf plots are 120°, 130° and 146°F.”

The report summary regarding heat is reproduced below:

“The results of the temperature measurements obtained from the fields studied in Connecticut indicate that solar heating of the materials used in the construction of synthetic turf playing surfaces does occur and is most pronounced in the polyethylene and polypropylene fibers used to replicate natural grass. Maximum temperatures of approximately 156° F were noted when the fields were exposed to direct sunlight for a prolonged period of time. Rapid cooling of the fibers was noted if the sunlight was interrupted or filtered by clouds. Significant cooling was also noted if water was applied to the synthetic fibers in quantities as low as one ounce per square foot. The elevated temperatures noted for the fibers generally resulted in an air temperature increase of less than five degrees even during periods of calm to low winds.

3 Most of the material reviewed by the work group involves artificial turf with crumb rubber infill. For a discussion of alternatives to crumb rubber infill, please see the Section on Alternative Infill Products in this report.
The rise in temperature of the synthetic fibers was significantly greater than the rise in temperature noted for the crumb rubber. Although a maximum temperature of 156° F was noted for the fibers, a maximum temperature of only 101° F, or approximately 16 degrees greater than the observed ambient air temperature, was noted for the crumb rubber.”

On Friday, September 24 at the Maryland SoccerPlex in Boyds, during its tour of both natural grass and artificial turf fields on the site, the staff work group asked the Discovery Sports Foundation staff to measure temperatures on one of its artificial turf fields. Note: All of the SoccerPlex artificial turf fields utilize a crumb rubber infill. Here are the results:

- Air temperature at 2:30pm was 95.6 degrees
- Turf radiant temperature was 142 degrees
- Turf surface temperature was 103 degrees
- Asphalt radiant temperature was 121 degrees

Interestingly, the radiant temperature (taken about 6 inches above the surface) was greater than the turf surface. In fact, the turf surface was warm but not hot to the touch. However, while on the field, there was a noticeable “warm air” feeling not noticed immediately off the field.

Finding: Artificial turf fields with a crumb rubber infill (both the surface and the air several feet above the surface) can get very hot during peak hot weather conditions.

The work group sought out any evidence that there was a higher level of incidence of heat-related medical issues with these fields then with natural grass fields. Once again, the New York Health Department study is instructive here:

“NYSDOH is unaware of any studies that have examined the role of synthetic turf in contributing to heat stress or that have compared the occurrence of heat stress among athletes playing on natural turf and synthetic turf.”

Options for Addressing the Heat Issue

Average daily high temperatures in the Washington DC area exceed 80 degrees 109 days per year and exceed 85 degrees 71 days per year (Source: TheWeatherChannel.com). While no days have average high temperatures over 90 degrees, it is not unusual for the area to experience 90 degree days. 2010 had a particularly high number of days (67) in which the daily high temperature exceeded 90 degrees (Source: Accuweather.com). Therefore, dealing with heat issues related to outdoor activities is an important issue for MCPS and Parks.4

4 It should be noted, however, that MCPS, Parks, and Community Use of Public Facilities (CUPF) have not had any participants or permittees report any major heat issues associated with the use of their artificial turf fields.
The staff work group identified two options for dealing with the temperature issue in artificial turf fields with crumb rubber infill:

- **Water the field regularly during high temperature periods**: This is a quick but only temporary way to reduce the field temperature. This strategy also requires irrigation equipment and staff to be present during these times. The New York Department of Health review of the BYU study notes:

 “Water can be applied to synthetic turf to reduce the surface temperatures on warm days. A study at BYU found that watering synthetic turf lowered the surface temperature from 174°F to 85°F, but the temperature rose to 120°F in five minutes and to 164°F in twenty minutes. A study conducted by Penn State University on experimental synthetic turf plots examined the effect of watering synthetic turf on surface temperature. Measurements were made on three occasions. For one monitoring period, surface temperatures ranging from about 130°F to 160°F were lowered initially to about 75°F, but increased within 30 minutes to temperatures ranging from about 90°F to 120°F, where they remained fairly stable for the three-hour monitoring period.”

Finding: Irrigation of artificial turf fields to reduce field temperatures does not appear warranted given its limited effect and additional costs.

- **Restrict use of artificial turf fields during peak high temperature periods**: This approach is often done by field owners who have staff on-site to make these day to day decisions on a case by case basis. The staff work group was unable to find examples of entities utilizing specific requirements (such as an ambient temperature limit or actual field temperature for instance) above which fields are always closed.

The Maryland SoccerPlex (which has 3 artificial turf fields and 17 natural turf fields) moves games from its artificial turf fields to natural turf fields on extreme temperature days. During the record heat experienced this past summer, events from the artificial fields were moved to natural grass 13 different days.

M-NCPPC-Parks, which typically does not have staff on-site at its artificial turf fields includes the following language in its permit for the use of the Montgomery Blair High School turf field to emphasize with permittees the need to safely use the fields on hot days:

 “This field can get very hot on warm sunny days. If you experience symptoms of heat-related illness such as dizziness, weakness, headache, vomiting, or muscle cramps, move to a shaded area. Drink water, rest, and seek medical attention if you do not feel better. In extreme temperatures, please cease all activities and get off the artificial turf field.”

Similar language is posted on signs near the field.

5 Taking actual readings on artificial turf fields (on the carpet itself and/or up to several feet above the carpet) can be done on a case by case basis. However, implementing a firm cutoff temperature would require monitoring and enforcement by the field permitter and may be arbitrary given that other factors affect heat-related health risks, such as humidity and cloud cover that can change throughout the day.
Montgomery County Public Schools and Community of Use of Public Facilities (CUPF) also follow an “advisory” approach for its permittees. At this time, they do not include permit language or signage to specifically address the heat issue.

MCPS provides an athletic handbook to its schools (excerpt attached in Appendix E) with weather-related guidelines; including related to heat and air quality. For example, practices and games are cancelled under code red or purple conditions. Similarly, Ann Arundel and Howard County Public Schools do not have specific policies in place. Code red and orange days result in outdoor restrictions in general, including on their artificial turf fields.

Work Group Recommendations:

- It is evident that surface and ambient temperatures on artificial turf fields can get quite hot. The work group believes MCPS should include the artificial turf heat issue in its athletic handbook in order to address circumstances where these fields are being used and/or supervised by MCPS directly during peak heat conditions (for instance for summer and early fall team practices and physical education classes).

 This guidance should provide for an assessment of field conditions on a case by case basis by the athletic staff at the school (considering ambient and field temperature readings).

- The work group believes common permit language and advisory signage for all artificial turf fields managed by MCPS, Parks, and Community Use of Public Facilities (CUPF) should be utilized.

- Regarding specific permit language, signage, and guidance provided for users of artificial turf fields the work group suggests that CUPF conduct a process that would include community user groups of artificial turf fields to develop guidelines for use of the fields in hot weather.
Environmental Impacts

One of the key issues that the T&E Committee requested that the staff work group review is the environmental impacts of artificial turf and how these impacts compare to natural grass fields. Montgomery County Department of Environmental Protection (DEP) Staff participated in the staff work group meetings and was asked by MCPS and Parks staff to review relevant studies, to consider whether the County should set up a water monitoring program for its own artificial turf fields, and to generally provide any recommendations it has with regard to the potential construction of future artificial turf fields. Staff from DEP assisted the work group but also noted that DEP’s participation would be limited due to dedication of resources to support the implementation of the County’s National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer Systems (MS4) permit.

The DEP had previously provided to Council Staff a summary of its research with regard to the environmental impacts of artificial turf and some pros and cons vis-à-vis natural turf. This information was included in a June 29, 2010, Council Staff packet to the Council’s Transportation, Infrastructure, Energy and Environment (T&E) Committee (later discussed at a July 1 Committee meeting). The information provided by DEP is included (in total) in Appendix F. The full committee packet is available at: http://www.montgomerycountymd.gov/content/council/pdf/agenda/cm/2010/100701/20100701_TE1.pdf.

Water Quality Impacts

Stormwater Management

In considering the possible water quality impacts of natural grass and artificial turf, storm water management requirements are an important consideration. These requirements are intended to provide both quantity (channel protection) and quality control.

Natural turf fields are considered pervious surfaces by the County’s Department of Permitting Services (DPS) for purposes of storm water management requirements. Prior to the new stormwater management standards (adopted by the State in May 2009 with an effective date of May 4, 2010) DPS required treatment of the first ¼ inch of runoff for newly established natural turf fields. This is typically achieved by building a crown in the center of the field and directing runoff into drainage areas along the edge of the field into grass swales or other types of stormwater management structures.

The new storm water management standards (adopted in June 2010) require the use of best management practices to replicate the runoff characteristics of “woods in good condition”. These practices involve the establishment of a target rainfall for each individual site using the physical characteristics of the soils on the site along with what is being proposed for land cover. The target rainfall is then used to establish the volume of runoff required to be “managed”. This may require different solutions depending on specific site conditions.

Artificial turf is considered impervious for storm water management purposes and is therefore treated in a similar manner as pervious pavement. Based on the new storm water management standards noted above, for a new artificial turf field an additional depth of gravel under the artificial turf field is typically added to meet statewide infiltration design standards. This approach is similar to what was done for the Richard Montgomery and Montgomery Blair high school artificial turf fields. The additional gravel depth provides a
reservoir of space to slow the drainage of the storm water (quantity control). The drainage of the storm water into the soil below the gravel base provides the quality treatment. Conversely, the Walter Johnson and SoccerPlex fields have underdrains that direct flows to adjacent storm water management structures for quality treatment via biofilters and/or sand filters and then a controlled release from a storage facility (quantity control).

Montgomery County DEP Review of Studies
The DEP staff looked at a number of studies focusing on water quality issues, especially with regard to the potential leaching of materials from the artificial turf carpet and/or the infill material and the impact this leaching may have on the quality of the receiving stream and the aquatic habitat in the stream.

The DEP findings were:

- Some studies have concluded that used tire products and artificial turf fields are unlikely to generate pollutants at a level above water quality limits (Lim and Walker 2009, Moretto 2007, Vidair, Haas and Schlag 2007, Ledoux, 2007, Lim, 2010, Bristol and McDermott 2008, Chemrisk 2008, Hofstra 2008, and Johns and Goodlin, 2008). Studies generally have found that fields have the potential to release low levels of pollutants when first installed, but that levels drop off very quickly to background levels. Only four of the studies listed above directly sampled runoff from actual artificial turf fields (Bristol and McDermott, 2008, Hofstra, 2008, Lim and Walker, 2009 and Moretto, 2007.)

- Studies done in other settings indicate that used tire products clearly have the potential to release toxic substances (Brown, 2007, Denly, Rutkowski and Vetrano, 2008, USEPA, 2009). Polycyclic aromatic hydrocarbons, zinc and other metals are the principal substances of concern produced by used tires although many other substances have been identified in small concentrations. It is difficult to relate these results to actual environmental conditions. Many of the identified substances are in low concentrations and may not be released under field conditions. Little information exists on the impacts of many of these substances. Most of them have no relevant government regulatory standards. However, it is also possible that synergistic impacts could occur when these substances exist in combination.

- Some studies have identified rare instances of lead on older artificial turf fields (NJDHHS 2008, NYCDPR Undated). The U.S. Consumer Product Safety Commission (CPSC 2008) has tied the lead in these fields to pigments used in the carpeting material and recommended that lead not be used in the manufacture of new fields. WORK GROUP COMMENT: MCPS and Parks staff note that their existing three artificial turf fields consist of carpets made of polypropylene (not nylon as was the case in older artificial turf fields where lead was identified). Parks staff had a carpet sample from the artificial turf field at Montgomery Blair High School tested and no detectable level of lead was found.
Subsequent to the July 1, 2010 T&E Committee meeting, DEP staff reviewed results from an ongoing synthetic turf monitoring plan (see appendix G) being managed by the San Francisco Public Utilities Commission (SFWater). SFWater provided DEP with some sampling results (see appendix H). DEP staff summarized these results by noting:

“With regard to zinc, one of the primary constituents of concern, the total zinc level is above the Maryland Toxic Substances Criteria for Ambient Surface Waters (120 ug/l) standard. However, the dissolved level is not above the acute toxicity level. Because the standard is based on the biologically available or dissolved concentration, the samples are below toxic levels based on Maryland standards.”

Work Group staff has contacted SFWater staff to collect additional information regarding the cost and status of the study and whether a similar study could be established here. DEP staff noted that a well designed and detailed study would take “considerable time and cost and could still leave questions unanswered.” The DEP staff believes such a study “would cost be at least $100,000 and could be three to four times more.”

The DEP staff was also asked to comment on a July, 2010, report released by the Connecticut Department of the Environment. DEP provided the following comments:

“The study generally supports prior results. It does indicate that zinc in runoff could be a concern although they conclude that SWM should be able to address it. The stormwater data is limited though and far from conclusive”

The DEP staff also was asked whether the construction of artificial turf fields would impact the County’s compliance with its National Pollutant Discharge Elimination System (NPDES) permit. The DEP staff noted that the construction of artificial turf fields:

“should not affect NDPES permit requirements nor should it affect TMDLs. It is considered impervious by DPS (Montgomery County Department of Permitting Services) but would be considered treated to the MEP (maximum extent practicable).”

Comparing the Environmental Impacts of Natural Grass and Artificial Turf Fields
With regard to directly comparing the environmental impacts of artificial turf fields versus natural grass fields, the staff work group was unable to find any comprehensive studies that quantitatively addressed this issue. DEP staff previously provided a general summary (see Appendix F). In short, DEP notes that,

“Artificial turf fields are made of synthetic materials that require energy and other inputs including petroleum. Natural grass fields are laid down as sod or seeded and grown in place. Both sod and seed are produced using fertilizer, energy and other inputs. It is difficult to say which of these processes are preferable from an environmental standpoint.”

Below is some additional information collected by the staff work group.
Maintenance Practices

In comparing maintenance practices for natural and artificial turf fields a major difference is that the artificial turf fields do not require pesticides, fertilizers, irrigation, or mowing. The artificial fields do require grooming and sweeping on a much less frequent basis than the mowing of natural grass fields. For a sample listing of maintenance assumptions for different types of fields, please see Appendix C. Appendix C was developed using the expertise of SoccerPlex staff that are familiar with maintaining natural (Bermuda and cool season grass) fields as well as artificial turf fields in Montgomery County.

Carbon Footprint

The staff work group was able to find one study by the Athena Institute of Ontario Canada (2007), (http://www.athenasm.org/projects/docs/UCC_project_ATHENA_technical_paper.pdf) that calculated the carbon footprint of artificial turf versus natural grass at the request of the Upper Canada College (a K-12 school) in Toronto, Canada, which wanted its switch from a natural grass to artificial turf field to be carbon neutral. The study looked at the manufacture, transport, installation, maintenance, and disposal of an artificial turf field versus the costs to build and maintain a natural grass field assuming a 10 year time horizon. The study then calculated the greenhouse gas emissions (ghgs) offset (over ten years) to be 72.6 metric tons (based on an estimated 55.6 metric ton impact for an artificial turf field and -16.9 metric tons for natural grass. To offset this impact (through carbon sequestration) over a ten year period would require planting 1861 trees.

This report was reviewed by San Francisco’s Synthetic Playfields Task Force in 2008 (report available for download at: http://www.verdedesigninc.com/pdf/SyntheticPlayfieldsReportFinalDraft082108.pdf). The task force noted a number of potential factors not included in the report but agreed that the construction of artificial turf fields should be targeted to maximize the benefits and minimize the impacts (including greenhouse gas emissions).

In reviewing the Athena Study, the Staff Working Group identified some limiting factors in extrapolating the Athena findings. One factor is that the ghg emissions from the transportation of materials are site specific (based on where the materials to be purchased were made and assuming the materials are transported to Toronto, Canada) and thus would have to be revised based on locating a field in Montgomery County. It is also not clear what type of natural grass field was assumed for the comparison (sand base or native soil) and whether the construction, maintenance, and carbon sequestration might be different for the different types of natural grass fields.

Another major element, not included in the Athena study is the differences in the hours of use of artificial turf fields over natural grass fields identified earlier. The impacts of constructing and maintaining additional grass fields would need to be factored into the analysis if assuming equal hours of use under both options. This is an important consideration, since the construction of a natural grass field from unimproved land and
the ongoing maintenance of that field, would involve ghg emissions that may close much of the gap identified in the study.6

Also, as noted earlier in this report, the carbon impact of automobile trips for all off campus sports team practices was quantified at approximately 43.3 tons of annual carbon emissions (or 433 tons over ten years or about 20 metric tons of emissions per high school). Since MCPS is able to keep many practices on-site at its high schools with artificial turf stadium fields, there is the potential for significant ghg emissions reductions from avoiding off campus team practices. Fewer game cancellations (discussed earlier) on artificial turf fields also would result in reductions in vehicle miles travelled and thus provide for a reduction in ghg emissions as well.

Finding: The impacts of material transportation, construction, maintenance, and loss of carbon sequestration result in artificial turf fields adding ghgs to the atmosphere when compared to a natural turf field. However, taking into account other factors (such as increased usage at one field rather than constructing additional new fields, keeping MCPS team practices on-site, and reduced game cancellations) may eliminate much if not all of this ghg impact.

Heat Island Effect

Given that artificial turf fields generate higher temperatures immediately above the carpet surface than do natural grass fields (as described in more detail in Section VI), there could be some impact on urban heat islands associated with artificial turf fields. However, the degree to which artificial turf ball fields might exacerbate the problem are unclear given the relatively few acres of artificial turf already constructed or planned in Montgomery County. A report by the New York City Department of Health and Mental Hygiene (2008), notes:

> “The contribution of synthetic turf to urban heat islands is presently unknown. However, due to the increased temperatures measured on these synthetic turf systems, they may contribute local increased ambient temperatures, but their contribution to the overall urban heat island effect is likely to be small.”

The staff work group was unable to find studies documenting the impact of a single artificial turf field on the heat island effect.

Recycling and/or Disposal of Artificial Turf Fields

Currently, if an artificial turf carpet is hauled to the Montgomery County transfer station, the hauler pays a tipping fee ($56 per ton for closed top or $60 for open top vehicles which would likely be involved with this material). The heavy backing on the artificial turf carpet does not burn well and therefore DEP sorts this

6 For instance, assuming the emissions numbers in the study, each natural grass field involved generates about 13.4 tons of ghg emissions from maintenance activities over a ten year period. Since the new fields could presumably have been unimproved land, much less of a carbon sequestration benefit may be assumed.
type of carpet with other “nonprocessible” waste rather than sending it with the regular trash stream to the Resource Recovery Facility (RFF) for incineration. Non-processible waste is trucked by contract from the transfer station to a landfill in Brunswick, Virginia at a cost of $45 per ton. An artificial turf carpet for a standard size football field weighs approximately 220 tons. However, given the relatively few fields in place in Montgomery County, DEP does not see the future disposal of these fields as a major issue.

If the infill material (approximately 460 tons for a FieldTurf artificial turf field) used with the artificial turf field is also taken to the transfer station, this material would be sent to the RRF for incineration. The same tipping fees noted above apply. However, the $45 contracted hauling cost is not incurred since the material is not going to the landfill in Brunswick, Virginia.

According to DEP Division of Solid Waste Services staff, the current process described above does not involve any significant operational or financial issues for the County’s Solid Waste system. However, consistent with the County’s solid waste policies of supporting waste reduction, reuse, and recycling ahead of incineration and landfilling, DEP supports MCPS’ recommended approach of requiring artificial turf installers (as part of the contract for the installation of a new field) to reuse and/or recycle any artificial turf field components from the field being replaced. Similarly, new fields that are installed should to the maximum extent possible use non virgin materials and/or materials that are conducive to future reuse or recycling.

Montgomery County’s Solid Waste Advisory Committee (SWAC) recently transmitted some recommended actions related to artificial turf disposal to the County Executive for his review (see appendix K).

Recommendation: Parks and MCPS staffs should include language in future contracts requiring the recycling of artificial turf fields by the field installer.

DEP Recommendations
The Staff Work Group asked DEP to provide its perspective on the artificial turf issue based on its review of the various studies. From an environmental perspective, should MCPS and Parks not build any more artificial turf fields pending further study? The DEP response has been that it does not have a position on artificial turf. The DEP has also not provided any specific recommendations regarding the construction and use of artificial turf, such as whether water quality monitoring should be done for existing fields, if specific storm water management practices should be done, or whether particular alternative infill choices should be pursued.

Recommendations from Other Environmental Departments
Since the staff work group did not receive specific recommendations from the Montgomery County DEP, the group reviewed a number of studies that focused on environmental issues and which included recommendations by an Environmental Department. Of particular help were the following two studies.
Connecticut Department of Environmental Protection, July 2010

The full report is available at: http://www.ct.gov/dep/cwp/view.asp?a=2690&Q=463624&depNav_GID=1511 along with reports from other Connecticut agencies looking at various issues of concern regarding artificial turf.

The Connecticut DEP study’s conclusion is reprinted in full below:

“The DEP concludes that there is a potential risk to surface waters and aquatic organisms associated with whole effluent and zinc toxicity of stormwater runoff from artificial turf fields. Zinc concentrations in the stormwater may cause exceedences of the acute aquatic toxicity criteria for receiving surface waters, especially smaller watercourses. The DEP suggests that use of stormwater treatment measures, such as stormwater treatment wetlands, wet ponds, infiltration structures, compost filters, sand filters and biofiltration structures, may reduce the concentrations of zinc in the stormwater runoff from artificial turf fields to levels below the acute aquatic toxicity criteria. Individual artificial turf field owners may want to evaluate the stormwater drainage systems at the fields and the hydrologic and water quality characteristics of any receiving waters to determine the appropriateness of a stormwater treatment measure.

This study did not identify any significant risks to groundwater protection criteria in the stormwater runoff from artificial turf fields. It is important to note, that the DEP study did not directly collect and analyze groundwater at these artificial turf fields. Consequently, this conclusion regarding consistency with groundwater protection criteria is an extrapolation of the stormwater results collected and the evaluation of data presented in recent studies, such as Nilsson et al (2008) and Lim et al (2009). To make a final conclusion regarding the overall risk from exposure to groundwater affected by stormwater runoff from artificial turf fields, further sampling and analysis of groundwater at the artificial turf fields would be required.”

San Francisco Department of the Environment (SFE) (as part of a Synthetic Playfields Task Force Report completed in August 2008).

(Full Task Force Report available at: http://www.superfill.net/dl010808/SFParks_Playfields_8.21.08.pdf). The Task Force took a broad look at artificial turf issues and more relevantly for this section included SFE findings and recommendations.

Below are the SFE findings and recommendations as published in the Task Force report.

“The Precautionary Principle guides SFE’s review and evaluation of the environmental impacts of city programs and initiatives.

It is important to note that the Precautionary Principle does not advocate the avoidance of any and all potential environmental risks.

The Principle does advocate for a public process in which the benefits of an action or technology are weighed against potential risks. The deliberation that occurs should explore and assess available
alternatives for comparative risks, related financial and resource costs, and other immediate and long-term consequences.

In keeping with the basic tenets of Precautionary Principle, in January 2008 San Francisco Department of the Environment (SFE) issued a letter making the following key conclusions:

1. SFE recognizes potential environmental advantages and disadvantages from synthetic turf use.

2. SFE recognizes that human health risks are minimal from exposure to the crumb rubber infill used with synthetic turf products, according to the OEHHA study\(^7\). SFE recommended a precautionary approach to assessing these risks due to the lack of established reference doses for some ingredients.

3. SFE is concerned that there is currently no system available to recycle used synthetic turf, even though most of the products are composed of polyethylene, an easily recyclable plastic.

4. SFE recommends that RPD specify the use of recycled content materials in the manufacturing of artificial turf.

5. SFE recognizes the potential for aquatic toxicity from synthetic turf leachate, but also notes that leachate concentrations will not approach levels of concern in normal installations above water table.

6. There are several other potential health-related issues related to synthetic turf that are outside the scope of their review, including differences in sports injuries on synthetic turf vs. natural turf, and the potential for spreading methicillin-resistant Staphylococcus aureus (MRSA) among players.

San Francisco Department of the Environment Recommendations:
1. Create transparent selection criteria for determining which playing fields will have synthetic turf installed. These criteria should include the selection of sites that are not prone to flooding.

2. Confine installations of synthetic turf to the sites where its other benefits are maximized.

3. Due to the need for information regarding potentially toxic constituents, require full ingredients disclosure from manufacturers.

FOOTNOTE FROM SF TASK FORCE REPORT: \(^7\) In January 2007 the California Office of Environmental Health Hazard Assessment (OEHHA) published three studies for the California Integrated Waste Management Board (CIWMB) that evaluated rubberized matting used in playgrounds. The CIWMB needed to gain a better understanding of the potential health risks to children using outdoor playground and track surfaces made of recycled waste tires. In addition to an evaluation of toxicity, OEHHA also tested the playground surfaces for their ability to attenuate fall-related impacts and the potential of the rubberized surfaces to impact the local environment. CIWMB manages a grant program to promote markets for recycled-content products derived from waste tires in California. The OEHHA study found no evidence that rubberized matting used in playgrounds, a material similar in composition to synthetic turf infill, would cause danger or harm to human health or the environment.
4. If hand-to-mouth exposure by children can be reasonably expected, post signs reminding parents to wash children's hands after play.

5. Due to concerns over end-of-life disposal, require that synthetic turf vendors guarantee take back of the product at end of life, and provide documentation that the product is recycled.

6. Pursuant to the ordinance regarding the use of recycled content materials in Public Works construction, SFE recommends that post-consumer recycled content materials be specified in the manufacturing of all components comprising artificial turf.

7. Do not permit the use of disinfectants on synthetic turf areas without full review by the Department of Public Health.

8. Obtain comments from the San Francisco Public Utilities Commission on both the potential water conservation benefits and the leaching concerns associated with synthetic turf products.

9. Obtain comments from the DPH Environmental Health Section on the human health risks discussed above.”

Finding: While both the Connecticut and San Francisco environmental departments identified potential environmental impacts, neither study determined that these impacts were of sufficient concern to warrant a moratorium on the construction of artificial turf fields with crumb rubber infill. Instead, both departments recommend specific practices to reduce or mitigate these impacts.

NOTE: A Work Group member contacted Dr. Chris Geiger of the San Francisco Department of the Environment (SFE) to find out what was happening in San Francisco now (since the Task Force report came out nearly 18 months ago). Dr. Geiger participated on the Synthetic Playfields Task Force and is still actively involved with the issue as SFE’s Integrated Pest Management (IPM) and Green Purchasing Program Manager. He noted that the City of San Francisco (through the “City Fields Foundation”) is in the process of building a number of artificial turf fields (with crumb rubber infill) in the city. Dr. Geiger noted that results from the ongoing SFWater study, mentioned earlier, found no issues of concern. An October 2010 OEHHS study on health impacts also found no issues of concern.

Dr. Geiger and Mr. Dan Mauer have assisted in the development of field specifications (see Appendix L for full specification) that includes a number of provisions to address environmental and health concerns and generally reduces the environmental footprint of the product. A summary of these provisions is provided in a memo from Dan Mauer to the San Francisco Recreation and Parks Commission (RPD) (see Appendix M).

Recommendation: Parks and MCPS staffs should explore incorporating some of the environmental testing requirements identified in the City of San Francisco artificial turf specification into future specifications for artificial turf fields constructed for Parks and MCPS.
Alternative Infill Products

The artificial turf industry is expanding rapidly. Turf companies and infill manufacturers are attempting to respond to concerns with Styrene-Butadiene-Rubber (SBR) infill materials and are developing new alternatives. While a number of government studies discussed earlier have not found significant health and environmental concerns with the use of SBR, from the latest technology crumb rubber fields, there continues to be active exploration of alternative infill materials that do not contain the hazardous substances found in SBR.

All artificial turf fields are systems built using similar components—an underground drainage system with a compacted gravel base, a polypropylene fiber carpet, and an infill product used in combination with sand to hold the carpet fibers upright and to cushion the surface to mimic the characteristics of natural grass. Different manufacturers vary the carpet fibers and infill materials to carve out a niche for their product. The artificial turf industry is operating in a young expanding market with the volatility of companies emerging and failing with regularity. In an attempt to capitalize on the concerns generated around crumb rubber infills, a number of companies are bringing to market alternative infill materials aimed at addressing the heat issue and the uncertainty of chemicals contained in and released from crumb rubber.

There are basically five types of infill materials in addition to sand on the market—SBR Crumb Rubber, TPEs (Thermoplastic Elastomers), EPDM (Ethylene Propylene Diene Monomer) Rubber, Organic Infill materials, and Acrylic Coated Sand. Many manufacturers have entered the artificial turf infill market to respond to rapidly expanding demand for artificial turf fields, and some have marketed off the shelf materials developed for other applications. However, the artificial turf market is growing more sophisticated with extensive research going into carpet fiber development and infill safety and durability. The truth is that a high quality artificial turf field requires high quality carpet fiber and infill materials. In a highly competitive and maturing market it is easy to understand why the failure of older artificial turf fields is reported and used as justification for use of one product over another. Each infill product on the market has advantages and disadvantages. It will take time for products to emerge that will have a proven record for durability and environmental friendliness.

Types of Infill

In order to develop a sense of the level of satisfaction with installations of artificial turf across the country a work group member contacted suppliers, installers, universities, and school districts to discuss their experiences with different combinations of turf infills. Based on those discussions, below is a brief description of each of the five different types of infill materials on the market with some advantages and disadvantages of each and a listing of some recent installations.

SBR Crumb Rubber (Cryogenic and Ambient)—The vast majority of turf installations currently use SBR. There reports from agencies including the Consumer Product Safety Commission, and the U.S. Environmental Protection Agency that acknowledge the presence of hazardous chemicals in crumb rubber, but find no evidence that the chemicals are released in harmful amounts or would be injurious to the health of athletes using the fields. Some manufacturers have not taken the care in their manufacturing quality control leading to a poor quality product (i.e. too much fines and fiber.) Poor quality control can cause problems applying the product, problems with durability, and problems with not allowing the water to percolate - causing poor drainage. Cryogenic Crumb Rubber has been studied by a number of state and city agencies and has not been found to be detrimental to the environment or to athletes who use the fields.
There is an added benefit to recycling thousands of tons of old tires that otherwise would end up in landfills. In Montgomery County Richard Montgomery High School (2008), Montgomery Blair High School (2009), Walter Johnson High School (2010), and Fairland Regional Park (2010) all have crumb rubber infill. The manufacturer (FieldTurf) has provide letters indicating that at the end of the useful lives of the fields the carpet and infill materials will be 100 percent recycled.

Thermoplastic Elastomers (TPEs)—There are many TPEs in the market. The advantage of TPEs is that they are made from virgin materials and some contain no lead, zinc, or other toxic materials. They also are cooler to play on. The drawbacks are that TPEs are very expensive to fabricate and subject to wide manufacturing variations. Some TPE fields get hard over time. The problem with the generic name TPE is that it is a broad term. Many companies will use certain fillers that can be detrimental to the health of the player and the environment. Some TPEs can contain heavy metals. Others do not have crush resistance, flexibility, and softness. Some TPEs may not have UV stabilizers. The shape of the material will have an impact on the playability and safety. One particular product, Futrfill™ by Target Industries shows promise as being free of heavy metals and toxins and is specified by the City of New York School Construction Authority (NYCSCA). NYCSCA installed one field in the fall of 2010 with two pending for 2011. The product should be recyclable for use as infill in a replacement field.

EPDM Rubber—(Ethylene Propylene Diene Monomer) is a virgin material that is durable, non-toxic, and environmentally friendly. It is capable of be manufactured in a wide variety of colors and creates a surface that strongly resembles a natural grass playing surface. Given the ability to vary its color, the EPDM will not get as hot as a SBR field. EPDM has been used primarily in Europe, but has recently had problems with two major firms replacing a large number of fields due to a reaction between the EPDM and the carpet fiber that causes a breakdown in the fiber. Brigham Young University installed an intramural field with EPDM infill in 2009. The field is light grey in color to reduce reflective heat. The EPDM material is recyclable.

Organic Infill Materials—Organics are new to the market, and they are not yet widely available. The advantage of organic infill materials is that they are non-toxic and environmentally friendly. Some are made from cork and coconaut fibers (corkonut) while others are made of walnut shells. All are treated with an antimicrobial application to prevent deterioration of the infill. The drawback is that they have no track record for durability. Concerns include potential break down of the organic material, insects, and compaction of the material over time. The material is recyclable at the end of its life cycle into other products, but could not be reused for infill for a new artificial turf field. The city of Piedmont California in the San Francisco bay area in 2010 installed a GeoTurf™ (corkonut) organic infill artificial turf field manufactured by Limonta at an elementary school.

Acrylic Coated Silica Sand—There are now probably four to six producers in North America that produce this product. The advantage to acrylic coatings is that they are known materials and most do not contain heavy metals and toxins. They will stay approximately 20 degrees cooler than crumb rubber field. Acrylic material is hard and must be combined with a softer filler material. The problems with coated silica sands from some manufactures are: a) the coating disperses in water, b) sand particles gel together, c) poor size distribution of sand, d) poor quality silica sand before the material is coated. Coating does not adhere properly to sand particles and breaks down over time. The Los Angeles Unified School District (LAUSD) in 2009 installed a FlexSand Action™ infill material at its Helen Bernstein High School. They are pleased with its performance.
Stiffs from MCPS and Parks support the following findings:

Finding—Because the synthetic turf industry is changing rapidly to meet the needs of its customers, decisions made on new companies and products should be well researched to make sure that the money spent on artificial turf systems is based on sound life-cycle cost information.

Finding—Many owners, installers, and suppliers of artificial turf fields believe that crumb rubber is the best infill product on the market because it has been field tested and proven for performance over a number of years. Alternative infill materials are being marketed primarily to compete with crumb rubber based on the negative perceptions attributed to SBR. While some of the alternative infills may show promise in terms of durability and performance over time, Parks and MCPS staffs believe it is too early to invest in an unproven product until a greater track record is established for many of these materials.

Recommendation: Parks and MCPS believe that county agencies should continue to monitor the success or failure of alternative infills before considering a change from SBR infill material.
Appendices

A. Summary of Artificial Turf Fields (ATF) Located at Maryland and Neighboring Public School Systems

B. Warranty for Montgomery Blair High School artificial turf field.

C. Life-Cycle Cost Maintenance Assumptions

D. Life-Cycle Cost Analysis Detail and Assumptions
 1. MCPS high school stadium fields
 2. Montgomery County Parks fields

E. Excerpt from MCPS Athletic Handbook on Heat and Air Quality

F. Montgomery County Department of Environmental Protection attachment to the July 1, 2010, Montgomery County Transportation, Infrastructure, Energy, and Environment Committee meeting packet

G. Results from ongoing synthetic turf monitoring plan being managed by the San Francisco Public Utilities Commission (SFWater).

H. Sampling Results from SFWater

I. Letters from Montgomery County Citizens Advisory Boards
 1. Western Montgomery County CAB Letter to The Honorable Nancy Floreen, President Montgomery County Council, September 30, 2010
 2. Mid-County CAB Letter to the Honorable Isiah Leggett, County Executive and Ms. Mary Bradford, Director Montgomery County Parks, June 17, 2010

J. Resolution from the Montgomery County Storm Water Partners Network, undated

K. Solid Waste Advisory Committee (SWAC) – Annual Meeting with the County Executive, February 10, 2011

L. City of San Francisco Specification for Artificial Turf Fields

M. Memo from Dan Mauer dated July 8, 2009, to the San Francisco Recreation and Park Commission on provisions to reduce the environmental footprint of artificial turf fields
Appendix A: Summary of Artificial Turf Fields (ATF) Located at Maryland and Neighboring Public School Systems

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Number of High Schools</th>
<th>Number of ATF Stadium Fields</th>
<th>Considering one or an additional ATF</th>
<th>Vendor(s)</th>
<th>Satisfaction level</th>
<th>Heat Issues</th>
<th>Hot Weather Practice Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extremely</td>
<td>Very</td>
<td>Satisfied</td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allegany</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>Field Turf Tarkett</td>
<td>X</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Anne Arundel</td>
<td>12</td>
<td>11</td>
<td>includes two under construction</td>
<td>Field Turf Tarkett one field, Sunny Acres for other eight</td>
<td>no</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Baltimore City</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td>Sportexe</td>
<td>X</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Baltimore County</td>
<td>24</td>
<td>5</td>
<td>yes</td>
<td>Field Turf Tarkett</td>
<td>X</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Calvert</td>
<td>4</td>
<td>0</td>
<td>not yet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caroline</td>
<td>2</td>
<td>0</td>
<td>not yet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll</td>
<td>8</td>
<td>0</td>
<td>yes - new high school</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cecil</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>6</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>X</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Dorchester</td>
<td>2</td>
<td>0</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frederick</td>
<td>10</td>
<td>4</td>
<td>not at this time</td>
<td>Sprint Turf</td>
<td>X</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Garrett</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harford</td>
<td>10</td>
<td>5</td>
<td>yes</td>
<td>3 Field Turf Tarkett, 2 Geo Sport, 1 Astroturf</td>
<td>with Field Turf Tarkett</td>
<td>no</td>
<td>practice early, coaches check temps (1 coach thought natural grass area was hotter)</td>
</tr>
<tr>
<td>Howard</td>
<td>12</td>
<td>0</td>
<td>yes</td>
<td></td>
<td>X</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Kent</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montgomery</td>
<td>25</td>
<td>3</td>
<td>yes</td>
<td>Field Turf Tarkett</td>
<td>X</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>Prince George's</td>
<td>22</td>
<td>0</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen Anne</td>
<td>2</td>
<td>0</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Mary's</td>
<td>3</td>
<td>0</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somerset</td>
<td>2</td>
<td>0</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talbot</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>7</td>
<td>1</td>
<td>maybe</td>
<td>maybe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wicomico</td>
<td>4</td>
<td>0</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland Total</td>
<td>192</td>
<td>35</td>
<td>18.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neighboring

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Number of High Schools</th>
<th>Number of ATF Stadium Fields</th>
<th>Considering one or an additional ATF</th>
<th>Vendor(s)</th>
<th>Satisfaction level</th>
<th>Heat Issues</th>
<th>Hot Weather Practice Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairfax</td>
<td>26</td>
<td>6</td>
<td>yes</td>
<td></td>
<td></td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Washington DC</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighboring Total</td>
<td>42</td>
<td>19</td>
<td>45.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total All Schools</td>
<td>234</td>
<td>54</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manufacturer’s Limited Warranty

FieldTurf warrants that if FieldTurf FTOM 1F for football/soccer/lacrosse/field hockey synthetic turf proves to be defective in material or workmanship, resulting in premature wear, during normal and ordinary use of the Product for the sporting activities set out below or for any other uses for which FieldTurf gives its written authorization, within 8 years from the date of completion of installation, FieldTurf will, at FieldTurf’s option, either repair or replace the affected area without charge, to the extent required to meet the warranty period (but no cash refunds will be made). This warranty does not come into effect unless the Certificate of Completion is sent for validation to the head office of FieldTurf indicated below within 30 days of installation or customer use, whichever occurs first. This warranty is limited to the remedies of repair or replacement, which shall constitute the exclusive remedies available under this warranty, and all other remedies or recourses which might otherwise be available are hereby waived by the Buyer. FieldTurf will have no other obligations or liability for damages arising out of or in connection with the use or performance of the product including but without limitation, damages for personal injury or economic losses.

Other Exclusions

This limited warranty does not cover:
1. Damage resulting from accident, force majeure, misuse, intentional and unintentional abuse, infill displacement, and neglect or from other than normal and ordinary use of the Product. Normal and ordinary use is considered as usage up to 3,000 hours per year of regular play and utilization for the sporting activities set out in the warranty. Normal play and ordinary use includes a reasonable number of users or participants and does not include repetitive marching, repetitive training or high-intensity drills on the same part of the field, in particular to, but not limited to white or yellow lines, goal areas, and sideline areas, or the area around the bases, home plate and the pitcher’s mound.
2. Damage resulting from failure to maintain the Product in accordance with the maintenance and use instructions provided to the buyer. Buyer shall produce maintenance logs.
3. Damage resulting from repair, attempted repair or maintenance by anyone other than FieldTurf or an authorized distributor or authorized third party serviceman.
4. Damage due to causes which include but are not limited to the application of chemicals or cleaning agents, adhesive backing, dirt, traffic, normal matting, negligence, vandalism, fire, flood, windstorm, animals and improper care.
5. Failure or improper design of the base. Depression of the soil or matter upon which the base or Product rests.
6. Use of improper footwear such as long spiked track shoes and regular use of steel cleats. Standard soccer or football cleats are recommended. Flat soled shoes such as work boots should be avoided.

We disclaim liability for incidental and consequential damages for breach of any express or implied warranty, including any implied warranty of merchantability, with respect to the Product. In the event that the Product is used for purposes other than the specific sporting activities set out herein or any other uses for which FieldTurf gives its written authorization, it being understood that FieldTurf has tested the Product for use in connection with these sporting activities and may not have tested it for other uses, FieldTurf shall not be responsible for any and all damages incurred and this limited warranty as well as all legal warranties shall become null and void. Any product repairs or replacements performed under the terms of this guarantee shall not lead to any extension whatsoever of the guarantee.

Name of purchaser: Montgomery County Department of Parks, 9500 Brunett Ave., Silver Spring, MD 20901

Date of completion: August 10th, 2009

Location: Montgomery Blair High School

Address: 51 University Boulevard

State: Maryland

Tel: (301) 649-2451

Signature: [Signature]

Date: August 14th, 2009

Sporting Activities: Multi Sport use

Installed by: FieldTurf USA

City: Silver Spring

Zip: 20901

Fax:

(Please Print Name): Michael MacNeil

Reference: 061749

This warranty is insured by a third party. For more information please contact Customer Service at FieldTurf at the number listed below. FieldTurf 8088 Montview Road, Montreal, Quebec, Canada, H4P 2L7 Toll Free: 1-800-724-2969
Appendix C: Major Lifecycle Cost Assumptions

<table>
<thead>
<tr>
<th>Turf Selection</th>
<th>Artificial Turf</th>
<th>Bermudagrass</th>
<th>Kentucky Bluegrass</th>
<th>Bermudagrass</th>
<th>Cool Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Stone</td>
<td>Sand Base</td>
<td>Sand Base</td>
<td>Native Soil</td>
<td>Native Soil</td>
</tr>
<tr>
<td>Size</td>
<td>75,000 to 95,000 square feet</td>
</tr>
<tr>
<td>Irrigation</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stormwater Management Goal</td>
<td>Detain, infiltrate, or treat excess runoff to mimic the natural hydrology of woods in good condition. Natural turf is treated as pervious so a portion of the one-year storm requirement is assumed to be met via natural drainage. Artificial Turf is considered impervious and therefore more treatment is assumed to be needed to meet the same requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Annual Maintenance Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer</td>
<td>n/a</td>
<td>10 liquid and 10 granular applications</td>
<td>15 liquid and 10 granular applications</td>
<td>5 liquid and 7 granular applications</td>
<td>4 granular applications</td>
</tr>
<tr>
<td>Seed</td>
<td>n/a</td>
<td>1 split overseeding application with rye grass for color in the fall</td>
<td>1 fall and 1 spring seeding</td>
<td>1 split overseeding application with rye grass for color in the fall</td>
<td>1 fall and 1 spring seeding</td>
</tr>
<tr>
<td>Water</td>
<td>n/a</td>
<td>Summer months: ½ inch of water 3 times per week. Other months: ½ inch 2 times per week. Irrigation estimate = 1 million gallons per year</td>
<td>Summer months: daily watering up to ¼ inch depending on heat. Other months: ½ inch 2 times per week.</td>
<td>2/3 the requirement of sand base fields</td>
<td>2/3 the requirement of sand base fields</td>
</tr>
<tr>
<td>Fungicide</td>
<td>n/a</td>
<td>n/a</td>
<td>Preventative program: 4 applications during the summer</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Pesticide</td>
<td>n/a</td>
<td>n/a</td>
<td>grub treatment as needed</td>
<td>n/a</td>
<td>grub treatment as needed</td>
</tr>
<tr>
<td>Mowing</td>
<td>n/a</td>
<td>36 to 40 week cutting season: 5 times a week for 20 weeks, then 2 times a week for the other 16-20 weeks, use energy efficient Fairway mowers (diesel engine/hybrid)</td>
<td>36 to 40 week cutting season: 3 times a week for 20 weeks, then 1 time a week for the other 16 to 20 weeks, use Z mower (gasoline engine)</td>
<td>4 times a week for 20 weeks then 2 times a week for the other 16-20 weeks, bluegrass 3 times a week, 1 time a week (36 to 40 weeks) Fairway mowers (diesel engine) spinning electric alternator) hybrid versus Z mower (gas) burns more fuel.</td>
<td>36 to 40 week cutting season: 1 time a week for 40 weeks, use Z mower (gasoline engine)</td>
</tr>
<tr>
<td>Grooming</td>
<td>2 times per month</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sweeping</td>
<td>every 3 weeks</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Paint</td>
<td>Permanent lines assumed for all sports.</td>
<td>Once per week painting of each sport as needed.</td>
<td>Once per week painting of each sport as needed.</td>
<td>Once per week painting of each sport as needed.</td>
<td>Once per week painting of each sport as needed.</td>
</tr>
<tr>
<td>Top Dressing</td>
<td>6 times per year</td>
<td>4 times per year</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sod/Resprigging</td>
<td>once per year after heavy use in the spring</td>
<td>resod heavily used areas twice per year</td>
<td>once per year after heavy use in the spring</td>
<td>resod heavily used areas twice per year</td>
<td></td>
</tr>
<tr>
<td>Other Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Add Infill</td>
<td>once during life of carpet</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Renovation</td>
<td>replace carpet after 8 years</td>
<td>strip off, grade, and sod every 10 to 12 years</td>
<td>strip off, grade, and sod every 10 to 12 years</td>
<td>strip off, grade, and sprig every 10 to 12 years</td>
<td>strip off, grade, and seed every 10 to 12 years</td>
</tr>
<tr>
<td>Disposal</td>
<td>require replacement field contractor to recycle old field</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:
- Natural turf is treated as pervious so a portion of the one-year storm requirement is assumed to be met via natural drainage. Artificial Turf is considered impervious and therefore more treatment is assumed to be needed to meet the same requirement.
- For maintenance practices, typical applications are given, with specific maintenance tasks detailed below.

Maintenance Details:
- **Fertilizer:**
 - 1 split overseeding application with rye grass for color in the fall
 - 1 fall and 1 spring seeding
- **Seed:**
 - 1 split overseeding application with rye grass for color in the fall
 - 1 fall and 1 spring seeding
- **Water:**
 - Summer months: daily watering up to ¼ inch depending on heat. Other months: ½ inch 2 times per week.
 - 2/3 the requirement of sand base fields
- **Fungicide:**
 - Preventative program: 4 applications during the summer
 - n/a
- **Pesticide:**
 - grub treatment as needed
 - n/a
- **Mowing:**
 - 36 to 40 week cutting season: 5 times a week for 20 weeks, then 2 times a week for the other 16-20 weeks, use energy efficient Fairway mowers (diesel engine/hybrid)
 - 4 times a week for 20 weeks then 2 times a week for the other 16-20 weeks, bluegrass 3 times a week, 1 time a week (36 to 40 weeks) Fairway mowers (diesel engine) spinning electric alternator) hybrid versus Z mower (gas) burns more fuel.
- **Grooming:**
 - n/a
 - n/a
- **Sweeping:**
 - n/a
 - n/a
- **Paint:**
 - Permanent lines assumed for all sports.
 - Once per week painting of each sport as needed.
 - Once per week painting of each sport as needed.
 - Once per week painting of each sport as needed.
- **Top Dressing:**
 - n/a
 - 6 times per year
 - 4 times per year
 - n/a
- **Sod/Resprigging:**
 - Once per year after heavy use in the spring
 - resod heavily used areas twice per year
 - Once per year after heavy use in the spring
 - resod heavily used areas twice per year
Appendix D-1 MCPS

Lifecycle Comparison of Artificial Turf and Natural Grass Fields at MCPS High School Stadiums

<table>
<thead>
<tr>
<th>Year</th>
<th>Artificial Turf (w/ Crumb Rubber Infill)</th>
<th>Bermuda Grass (w/ Sand Base)</th>
<th>Kentucky Bluegrass (w/ Sand Base)</th>
<th>Bermuda Grass (w/ Native Soil Base)</th>
<th>Cool Season Grass (w/ Natural Soil Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,125,000</td>
<td>10,000</td>
<td>(100,000)</td>
<td>1,035,000</td>
<td>530,000</td>
</tr>
<tr>
<td>2</td>
<td>10,000</td>
<td>(100,000)</td>
<td>(90,000)</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>3</td>
<td>10,000</td>
<td>(100,000)</td>
<td>(90,000)</td>
<td>50,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

Cost Per Hour Calculation

<table>
<thead>
<tr>
<th>Artificial Turf (with Crumb Rubber Infill)</th>
<th>Bermuda Grass (Sand Base)</th>
<th>Kentucky Bluegrass (Sand Base)</th>
<th>Bermuda Grass (Native Soil Base)</th>
<th>Cool Season Grass (Native Soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours of Use/yr (see separate chart for details)</td>
<td>2,300</td>
<td>400</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>Cost of Use/Per Hour =</td>
<td>10.02</td>
<td>140.00</td>
<td>175.50</td>
<td>143.75</td>
</tr>
<tr>
<td>Net Present Value (1 Year Cost) at Various Discount Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>$532,751</td>
<td>11.14</td>
<td>1,363,644</td>
<td>113.64</td>
</tr>
<tr>
<td>5%</td>
<td>$564,483</td>
<td>12.27</td>
<td>1,211,398</td>
<td>100.95</td>
</tr>
<tr>
<td>7%</td>
<td>$587,512</td>
<td>12.77</td>
<td>1,091,630</td>
<td>90.97</td>
</tr>
</tbody>
</table>

Assumptions

<table>
<thead>
<tr>
<th>Capital Cost Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Turf</td>
</tr>
<tr>
<td>Bermuda Grass (Sand Base)</td>
</tr>
<tr>
<td>KSG (Sand Base)</td>
</tr>
<tr>
<td>Cool Season Grass (Native Soil)</td>
</tr>
<tr>
<td>Bermuda Grass (Native Soil)</td>
</tr>
<tr>
<td>KSG (Native Soil)</td>
</tr>
</tbody>
</table>

Sitework
- 235,000
- 450,000
- 100,000
- 500,000
- 60,000
- Site work costs only occur in initial construction

Turf Field Installation/Replacement
- 565,000
- na
- na
- na
- na
- 8 year AT replacement based on typical warranty length

Stormwater Management
- 390,000
- na
- na
- na
- na
- Stormwater Management costs only occur in initial construction. AT swm could be lower when swm is part of overall school modernization.

Equipment
- 25,000
- 80,000
- 50,000
- 80,000
- 15,000
- Required as part of contract for replacement AT field

Total - Initial Construction
- 1,125,000
- 530,000
- 150,000
- 580,000
- 75,000
- AT, and sand base costs will be less if done as part of a high school modernization

Total - Replacement
- 565,000
- na
- na
- na
- na
- 8 year AT replacement based on typical warranty length

Maintenance Costs
- 10,000
- 50,000
- 45,000
- 50,000
- 25,000
- Annual Montgomery IS revenue from permits was about 40k in CY10. MISE paid $300,000 for five years of use (or 60k per year). CUPF charges $125k/hr for non-profit in county groups and $200k/hr for all others. Blair and Richard Montgomery HS both permit about 1,000 hours for f community use per year, which would equal $125k per year at the non-profit rate. Conservative assumption of 100k (80% of total) used.
Lifecycle Comparison of Artificial Turf and Natural Grass Fields for Parks

<table>
<thead>
<tr>
<th></th>
<th>Artificial Turf (w Crumb Rubber Infill)</th>
<th>Bermuda Grass (w Sand Base)</th>
<th>Kentucky Bluegrass (w Sand Base)</th>
<th>Bermuda Grass (w Native Soil Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Capital Maintenance Revenue Net Cost</td>
<td>Capital Maintenance Revenue Cost</td>
<td>Capital Maintenance Revenue Net Cost</td>
<td>Capital Maintenance Revenue Cost</td>
</tr>
<tr>
<td>1 1,125,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>535,000 50,000 (60,000) (10,000)</td>
<td>520,000 50,000 (60,000) (10,000)</td>
<td>150,000 42,000 (140,000) 105,000</td>
</tr>
<tr>
<td>2 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>3 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>4 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>5 13,000</td>
<td>13,000 (100,000) (87,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>6 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>7 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>8 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>9 565,000</td>
<td>10,000 (100,000) 475,000</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>10 3%</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>11 5%</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>12 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>150,000 50,000 (60,000) 140,000</td>
<td>175,000 50,000 (50,000) 175,000</td>
<td>100,000 45,000 (140,000) 131,000</td>
</tr>
<tr>
<td>13 15,000</td>
<td>15,000 (100,000) (87,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>14 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>15 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>16 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>17 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>18 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>19 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>20 10,000</td>
<td>10,000 (100,000) (90,000)</td>
<td>50,000 (60,000) (10,000)</td>
<td>50,000 (50,000)</td>
<td>45,000 (140,000) 31,000</td>
</tr>
<tr>
<td>Total</td>
<td>2,255,000 206,000 (2,000,000) 461,000</td>
<td>680,000 1,000,000 (1,200,000)</td>
<td>480,000 755,000 1,000,000 (1,000,000) 755,000</td>
<td>250,000 900,000 (280,000) 870,000</td>
</tr>
</tbody>
</table>

Cost Per Hour Calculation

<table>
<thead>
<tr>
<th></th>
<th>Artificial Turf (w Crumb Rubber Infill)</th>
<th>Bermuda Grass (Sand Base)</th>
<th>Kentucky Bluegrass (Sand Base)</th>
<th>Bermuda Grass (Native Soil Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Capital Maintenance Revenue Net Cost</td>
<td>Capital Maintenance Revenue Cost</td>
<td>Capital Maintenance Revenue Net Cost</td>
<td>Capital Maintenance Revenue Cost</td>
</tr>
<tr>
<td>Total</td>
<td>2,255,000 206,000 (2,000,000) 461,000</td>
<td>680,000 1,000,000 (1,200,000)</td>
<td>480,000 755,000 1,000,000 (1,000,000) 755,000</td>
<td>250,000 900,000 (280,000) 870,000</td>
</tr>
</tbody>
</table>

Assumptions

- **KBG Cool Season Grass**
- **Artificial Turf (Sand Base) (Native Soil) (Sand Base) (Native Soil)**
- **Capital Cost Detail**
- **Equipment**
- **Water Management**
- **Recycling/Disposal of Turf Field**
- **Total - Initial Construction**
- **Total - Replacement**

Maintenance Costs

- **Annual Maintenance Costs**
- **Other Maintenance Costs**
- **Add infill (once during life of carpet)**
- **Resodding or major renovation**

Revenue

- **Annual CUPF Field Rentals - MCPS**
- **Annual CUPF Field Rentals - Parks**

See Appendix C for Maintenance Assumptions
WEATHER GUIDELINES

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Air Quality Index</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid 70s – Low 80°F</td>
<td>Code Green 0-50</td>
<td>No restrictions.</td>
</tr>
<tr>
<td></td>
<td>Good Air Quality</td>
<td></td>
</tr>
<tr>
<td>Upper 70s – Mid 80°F</td>
<td>Code Yellow 51-100</td>
<td>Watch carefully, appropriate water breaks.</td>
</tr>
<tr>
<td></td>
<td>Moderate Air Quality</td>
<td></td>
</tr>
<tr>
<td>Upper 80s – Low 90°F</td>
<td>Code Orange 101-150</td>
<td>Observe carefully (especially at risk</td>
</tr>
<tr>
<td></td>
<td>Unhealthy for sensitive</td>
<td>individuals) frequent water breaks.</td>
</tr>
<tr>
<td></td>
<td>groups Air Quality</td>
<td></td>
</tr>
<tr>
<td>Mid 90s – 100°F</td>
<td>Code Red 151-200</td>
<td>Hold one morning non-school day practice, or</td>
</tr>
<tr>
<td></td>
<td>Unhealthy Air Quality</td>
<td>one school day practice of one hour, with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mandatory water breaks every 20 minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Games cancelled.</td>
</tr>
<tr>
<td>Mid 90s – 100+°F</td>
<td>Code Purple 201-300</td>
<td>Afternoon practices cancelled.</td>
</tr>
<tr>
<td></td>
<td>Very Unhealthy Air</td>
<td>Games cancelled.</td>
</tr>
<tr>
<td></td>
<td>Quality</td>
<td></td>
</tr>
</tbody>
</table>

Source: Montgomery County Government, Department of Environmental Protection

It is the coach’s responsibility to call for air quality color codes and respond appropriately. The forecast and color code can be obtained by calling 202-962-3299 and/or visit their website at http://www.mwcog.org/environment/air/data.

Air quality (ground level ozone or smog) deteriorates when temperatures are in excess of 90°F, with low or no winds and clear skies. When such conditions are anticipated, a Code Orange, Red or Purple forecast is issued. Under such conditions at-risk individuals, who are heavily exercising, should be closely watched and if experiencing any breathing difficulties, immediately required to cease exercising and move indoors. At-risk individuals include those who responded “yes” on the Medical Evaluation Form to being asthmatic or having heart and lung function problems (Part I), and individuals who responded “yes” to having experienced chest pains, shortness of breath, weakness when exposed to high temperatures, or impaired lung function (Part 3).

In hot, humid weather, coaches are expected to use good judgment in determining the length and type of outdoor practice. Frequent practice breaks and drinking water must be provided. Coaches must be aware of signs of heat exhaustion. Players who exhibit these signs are to cease practicing. Salt tablets are not to be issued. Players should be counseled to continue proper hydration at home and after practices.

When schools are dismissed early because of heat, no practices, meetings, or contests are allowed.

In extremely cold weather coaches are expected to use good judgment in determining the length and type of practice. Athletic events may be rescheduled by mutual agreement of the athletic directors of the opposing schools if the wind-chill factor could be detrimental to the health and safety of the athletes.
THUNDER AND LIGHTNING

1. Procedures for suspending outdoor athletic events because of lightning/thunder.
 a. If thunder and/or lightning can be heard or seen, stop the activity and have players and spectators seek protective shelter immediately.
 b. Inform players that in situations where thunder and/or lightning may or may not be present, if they feel their hair stand on end and skin tingle, immediately assume the following crouched position: drop to their knees, place their hands/arms on their legs, and lower their head. They should not lie flat.
2. In the event that either thunder or lightning should occur, allow 30 minutes to pass after the last occurrence of thunder and/or lightning before resuming play.
3. In case of thunder or lightning during an athletic practice, scrimmage, or contest, the activity will be suspended immediately. Players and officials should seek shelter. Spectators will be directed to leave. All coaches are expected to have an alternate plan for seeking shelter and/or expedient departure in case of thunder or lightning or other severe inclement weather.
4. The principal has the final authority to delay or postpone events because of thunder or lightning. If the principal is not present, the host athletic director has the responsibility; if the athletic director or designee is not present, coaches have the responsibility.
5. If a game is suspended because of thunder or lightning, it shall be resumed the same day, if possible, at the discretion of the officials and host athletic director.
6. When a contest has been suspended for more than 1 1/2 hours (cumulative time) due to inclement weather, the contest shall be ended. The game will be rescheduled at a later date or continued from the point of suspension, in accordance with the rules governing that sport.

Unless a county-wide decision is announced, the decision to postpone outdoor athletic events because of adverse field conditions or inclement weather is the responsibility of the host athletic director or designee.

FIELD CONDITIONS

Elementary and middle school facilities shall not be used for practices or games when the following conditions exist:
1. Water is standing on the field.
2. One-half inch or more of rain has fallen within the previous 24 hours.
3. Turf and mud can be displaced or dislodged from the ground.
4. The ground cakes or clings to shoes.
5. A steady rain is falling.
6. Bare areas are muddy
Appendix F: Montgomery County Department of Environmental Protection
attachment to the July 1, 2010 Montgomery County Council Transportation, Infrastructure, Energy, and Environment Committee

Artificial Turf
Department of Environmental Protection
June 28, 2010

1. Environmental Benefits and Disadvantages of Artificial Turf Fields

Stormwater Management

Although grass fields are considered pervious surfaces, the County Department of Permitting Services (DPS) requires treatment of the first ¼ inch of runoff for stormwater management for newly established fields. DPS considers artificial turf to be an impervious surface for stormwater management purposes. This construction is similar to the design of stormwater management BMPs intended to promote infiltration such as pervious pavement. DPS requires an additional depth of gravel under County artificial turf fields to meet statewide infiltration design standards or requires underdrains to direct flows to adjacent stormwater management structures. A study of a field in France (Moretto, 2007) found that only 12% of rainfall percolated through the field over an 11 month period. They attributed the lost volume of water to evaporation and water flowing along the carpet fabric to the periphery of the field rather than through the fabric into the matrix below the field.

Pesticides and Fertilizers

Artificial turf fields do not require pesticides or fertilizers. Natural grass fields are often maintained with pesticides and fertilizers.

Mowing

While artificial turf fields do not require mowing, some field operators regularly groom the surface using a rake pulled by a small tractor. This is similar to mowing but somewhat faster and is not an essential practice. Some local fields receive minimal grooming (Table 3). In all cases, grooming is done at a lower frequency than mowing.

Irrigation

Natural grass fields generally require irrigation. Artificial turf fields do not require irrigation. Although some operators recommend watering artificial turf fields during very hot weather to reduce temperature impacts, most local artificial turf field operators do not water their fields (Table 3).
Other Issues

Artificial turf fields are made of synthetic materials that require energy and other inputs including petroleum. Natural grass fields are laid down as sod or seeded and grown in place. Both sod and seed are produced using fertilizer, energy and other inputs. It is difficult to say which of these processes are preferable from an environmental standpoint.

Artificial turf fields are generally projected to have life spans of approximately 10 to 15 years, depending on usage. During that time span they can tolerate a much higher level of usage than natural grass fields.

Table 3. Survey of Montgomery County and Fairfax County

<table>
<thead>
<tr>
<th>Artificial Turf Maintenance Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Field</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Private Schools in Mont. Co.</td>
</tr>
<tr>
<td>Fairfax County Park Authority</td>
</tr>
</tbody>
</table>

2. Government Findings and Other Applicable Studies

Most governmental studies have focused on the potential for human health impacts from used tire products. There have been far fewer governmental studies focusing on water quality or other environmental impacts from used tire products. This review focuses on potential water quality impacts from artificial turf runoff.

Some studies have concluded that used tire products and artificial turf fields are unlikely to generate pollutants at a level above water quality limits (Lim and Walker 2009, Moretto 2007, Vidair, Haas and Schlag 2007, Ledoux, 2007, Lim, 2010, Bristol and McDermott 2008, Chemrisk 2008, Hofstra 2008, and Johns and Goodlin, 2008). Studies generally have found that fields have the potential to release low levels of pollutants when first installed, but that levels drop off very quickly to background levels. Only four of the studies listed above directly sampled runoff from actual artificial turf fields (Bristol and McDermott, 2008, Hofstra, 2008, Lim and Walker, 2009 and Moretto, 2007.)

Studies done in other settings indicate that used tire products clearly have the potential to release toxic substances (Brown, 2007, Denly, Rutkowski and Vetrano, 2008, USEPA, 2009). Polycyclic aromatic hydrocarbons, zinc and other metals are the principal substances of concern produced by used tires although many other substances have been identified in small concentrations. It is difficult to relate these results to actual environmental conditions. Many of the identified substances are in low concentrations and may not be released under field conditions. Little information exists on the impacts of many of these substances. Most of them have no relevant government regulatory standards. However, it is also possible that synergistic impacts could occur when these substances exist in combination.
Some studies have found toxicity to aquatic organisms from tire leachate or relatively high concentrations of pollutants. For instance, Sheehan, et. al. (2006) found that leachate from tire shreds installed below the water table reduced survival of aquatic organisms. The design of artificial turf fields places the rubber above the water table. Lim and Walker (2009) found that crumb rubber produced an average zinc concentration of 1947.4 ug/L in a Synthetic Precipitation Leaching Procedure (SPLP) test. This is much higher than the Maryland freshwater criterion for aquatic life of 120 ug/L. Their SPLP results also found relatively high concentrations of many other substances. However, Lim and Walker (2009) characterize this test as an, “Aggressive laboratory testing method … which may overestimate releases from the samples as compared to releases in the ambient setting.” Less aggressive laboratory procedures found lower concentrations of pollutants.

Some studies have identified rare instances of lead on older artificial turf fields (NJDHHS 2008, NYCDPR Undated). The U.S. Consumer Product Safety Commission (CPSC 2008) has tied the lead in these fields to pigments used in the carpeting material and recommended that lead not be used in the manufacture of new fields.

Summary of Studies Reviewed

“The results of the study indicate that the actual stormwater drainage from the fields allows for the complete survival of the test species Daphnia pulex. An analysis of the concentration of metals in the actual drainage water indicates that metals do not leach in amounts that would be considered a risk to aquatic life as compared to existing water quality standards. Analysis of the laboratory based leaching potential of metals in accordance with acceptable EPA methods indicates that metals will leach from the crumb rubber but in concentrations that are within ranges that could be expected to leach from native soil.”

This literature review includes a laboratory study of tire crumb leaching and volatilization done by the Connecticut Agricultural Experiment Station. Brown concludes that crumb rubber has the potential to release a variety of hazardous substances.

This literature review of crumb rubber studies found that no adverse ecological effects are likely. They recommended that additional studies be done.

R:\Programs\NPDES\Projects\Artificial Turf Evaluation\Papers\CPSC Release.mht

“Although small amounts of lead were detected on the surface of some older fields, none of these tested fields released amounts of lead that would be harmful to children. ... Lead is present in the pigments of some synthetic turf products to give the turf its various colors. ... Although this evaluation found no harmful lead levels, CPSC staff is asking that voluntary standards be developed for synthetic turf to preclude the use of lead in future products.”

COPC (concentration of potential concern) from the crumb rubber vary depending on the type of crumb rubber, the method of extraction used for analysis, and the media measured (crumb rubber, air, leachate).

Hofstra found the contribution of zinc leaching from fields over relevant time periods to have insignificant environmental impacts. “The zinc concentration in the drainage water from 5- to 6-year-old fields is lower than the concentration in rainwater. ... The impact of weathering of the rubber crumb for the technical lifetime of an artificial turf field (approx. 10 to 15 years) does not cause the leaching of zinc from the rubber crumb made from recycled car tyres to exceed the threshold values for dissolved zinc in surface water or the derived threshold value from the Decree on Soil Quality for the emission of zinc into the soil.”

Literature review by Johns and Goodlin (2008) found that fields are unlikely to produce toxicity in surface waters or pollute groundwater.

NJDEP literature review concluded that there was insufficient information to perform a complete risk characterization for crumb rubber.

Ten additional water samples not included in Lim and Walker (2009) had results similar to the one sample discussed in that report (actual test results not available). Funding has not been available for further study.

This NY State study was mainly laboratory based, but limited field sampling resulted in 32 groundwater samples and one runoff sample. These samples were analyzed chemically and impacts estimated. SPLP laboratory analysis of crumb rubber found relatively high levels of some pollutants, the less aggressive laboratory column test found lower levels of pollutants. The study found little likelihood of impacts to groundwater, surface water or air quality from artificial turf fields.

Equipment was set up to obtain samples draining through an actual outdoor artificial turf field as well as four laboratory systems containing artificial turf. A surprisingly small amount of water was collected from the actual field relative to rainfall totals. Chemical analysis indicated an initial release of some pollutants followed by lower levels in subsequent samples. The results of the laboratory and field samples were similar. No environmental impacts would be anticipated based on the concentrations of pollutants observed or toxicology testing which was done.

This is a fact sheet on lead found at several New Jersey artificial turf fields made with nylon fibers. Most fields were found to have little or no lead.

This web page summarizes issues related to artificial turf fields including the finding of lead in one city field.

Sheehan, et. al. (2006) found no toxicity to two species of aquatic organisms from exposure to leachate from shredded tire fill placed above the water table. Exposure to leachates collected from tire shreds installed below the water table reduced survival. Modeling predicted that impact would disappear over a distance of 3 to 11 meters depending on local conditions.

This study collected air, dust, carpet fiber and rubber infill samples. They found average lead levels in the turf to be under EPA standards for lead in soil or floor dust.

This evaluation of human health impacts also included a literature review of environmental impacts. A low likelihood of soil or groundwater contamination was predicted. They also concluded that, “Considering all the data, it seems doubtful that recycled tire rubber in outdoor applications such as playground surfaces releases high enough levels of chemicals to cause toxicity to animals and plants living in the vicinity.”
Synthetic Turf Stormwater Quality Monitoring and Sampling Plan
February 2, 2010

Project Description and Background

The San Francisco Recreation and Park Department (RPD) has recently installed synthetic turf at playfields around San Francisco. Public concern about the health and safety of the synthetic turf products has arisen. One area of concern is the material chemical composition, in part due to the use of used tires for the rubber infill. In 2008, RPD established the Synthetic Playfields Task Force to review existing data and research and develop recommendations, which included the following:

- The Department should conduct or participate in tests of field stormwater runoff to determine the presence and potential levels of zinc and other possible contaminants.
- If the stormwater runoff meets drinking water standards, the Department should recharge it into groundwater, if feasible. If the water does not meet drinking water standards, the Department should collect runoff for discharge into the sewer system, where it will be treated appropriately.

The San Francisco Public Utilities Commission (SFPUC) and RPD are working together to complete the above recommendations. The Synthetic Turf Stormwater Quality Monitoring and Sampling Plan described herein outlines how these recommendations will be achieved.

Monitoring Goals and Objectives

The objectives of the Synthetic Turf Stormwater Quality Monitoring and Sampling Plan are:

- To collect stormwater quality data;
- To determine the potential impact of synthetic playfields on groundwater; and
- To assist with the planning and design of San Francisco playfields.

Sampling Locations

The sampling locations will be at two playfields where RPD has installed synthetic turf. Site plans of both locations are attached. The two locations are as follows:

- South Sunset Playground, which is located on 40th Avenue between Wawona Street and Vicente Street; and
- Garfield Square, which is located between 25th Street and 26th Street and Treat Avenue and Harrison Street.

Sampling Schedule

Data collection will start as soon as possible and will extend through the 2010/2011 rainy season. Sampling will be performed twice during 2009/2010 winter storm events and
twice during the 2010/2011 winter storm events. Ideally, samples should not be collected less than two weeks apart and should be collected as early as possible after the beginning of each storm, when there is sufficient flow available to allow sampling. The first sample collected during the 2010/2011 winter should be collected at the beginning of the first storm of that rainy season. The goal of the first 2010/2011 winter sampling event is to characterize the “first flush” stormwater quality characteristics.

Sampling Methods

At each sampling location, grab samples will be collected and sent to the SFPUC Water Quality Division Laboratory for analysis. These grab sample locations are shown on the attached figures and were discussed at a field visit that occurred on January 27, 2010.

Constituents and Methods

The physical parameters, chemical constituents, laboratory methods and laboratory reporting limits, where applicable, are as follows:

- pH (0.1 pH unit), temperature (0.1°C), specific conductance, turbidity (0.1 NTU), total dissolved solids (TDS), and total suspended solids (TSS)
- The following metals (total and dissolved), methods, and detection limits:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Method</th>
<th>MDL¹</th>
<th>ML²</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>SEM_200.8_WW</td>
<td>0.003</td>
<td>0.25</td>
</tr>
<tr>
<td>AS</td>
<td>SEM_200.8_WW</td>
<td>0.07</td>
<td>2</td>
</tr>
<tr>
<td>BA</td>
<td>SEM_200.8_WW</td>
<td>0.02</td>
<td>Not listed</td>
</tr>
<tr>
<td>BE</td>
<td>SEM_200.8_WW</td>
<td>0.04</td>
<td>0.5</td>
</tr>
<tr>
<td>CD</td>
<td>SEM_200.8_WW</td>
<td>0.006</td>
<td>0.25</td>
</tr>
<tr>
<td>CO</td>
<td>SEM_200.8_WW</td>
<td>0.005</td>
<td>Not listed</td>
</tr>
<tr>
<td>CR</td>
<td>SEM_200.8_WW</td>
<td>0.004</td>
<td>0.5</td>
</tr>
<tr>
<td>CU</td>
<td>SEM_200.8_WW</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>FE</td>
<td>SEM_200.8_WW (modified)</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>MN</td>
<td>SEM_200.8_WW</td>
<td>0.03</td>
<td>Not listed</td>
</tr>
<tr>
<td>MO</td>
<td>SEM_200.8_WW</td>
<td>0.07</td>
<td>Not listed</td>
</tr>
<tr>
<td>NI</td>
<td>SEM_200.8_WW</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>PB</td>
<td>SEM_200.8_WW</td>
<td>0.02</td>
<td>0.5</td>
</tr>
<tr>
<td>SB</td>
<td>SEM_200.8_WW</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>SE</td>
<td>SEM_200.8_WW</td>
<td>0.03</td>
<td>2</td>
</tr>
<tr>
<td>TL</td>
<td>SEM_200.8_WW</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>SEM_200.8_WW</td>
<td>0.007</td>
<td>Not listed</td>
</tr>
<tr>
<td>ZN</td>
<td>SEM_200.8_WW</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>HG</td>
<td>SEM_245.1_WW</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

¹ Minimum Detection Limit
² Method Limit as per the State Implementation Policy. (Method limit applies to the wastewater method and is similar to the reporting limit that applies to drinking water methods.)

- Volatile organic compounds (VOCs) by US EPA Method 624
- Semi-volatile organic compounds by US EPA Method 625
QA/QC

Field: A field duplicate sample for all constituents will be collected at the South Sunset sampling location. In addition, one trip blank will be analyzed for VOCs.

Laboratory: The laboratory(ies) shall follow all standard laboratory quality control procedures, including analyzing a matrix spike (MS) and matrix spike duplicate (MSD) for each constituent.

Data and Reporting

Once the samples are collected and analyzed at the lab, the data will be entered into LIMS under a new project entitled, “Synthetic Turf” and the two locations should be entitled, “SSPG” and “GarSq,” for South Sunset Playground and Garfield Square, respectively. The sample identifications, SDG numbers and a copy of the COC will be provided to Betsey Eagon, who will be coordinating the synthetic turf stormwater monitoring and sampling.

After the first two sampling events, the data will be summarized and reported in an Excel spreadsheet to RPD for review. After all four sampling events have been performed, the Excel spreadsheet will be updated and a brief memorandum will be prepared.
Synthetic Turf Stormwater Quality Monitoring

2009/2010 Monitoring Results

<table>
<thead>
<tr>
<th></th>
<th>South Sunset Playground</th>
<th>Garfield Square</th>
<th>MCL (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.3 (2)</td>
<td>6.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
<td>52 (2)</td>
<td>56</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>UMHOS/CM</td>
<td>237 (2)</td>
<td>224</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>49 (2)</td>
<td>117</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>MG/L</td>
<td>102</td>
<td>62</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>MG/L</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Silver</td>
<td>UG/L</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Dissolved Silver</td>
<td>UG/L</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Arsenic</td>
<td>UG/L</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Dissolved Arsenic</td>
<td>UG/L</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Barium</td>
<td>UG/L</td>
<td>70.00</td>
<td>107.79</td>
</tr>
<tr>
<td>Dissolved Barium</td>
<td>UG/L</td>
<td>50.08</td>
<td>61.06</td>
</tr>
<tr>
<td>Beryllium</td>
<td>UG/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Dissolved Beryllium</td>
<td>UG/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Cadmium</td>
<td>UG/L</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Dissolved Cadmium</td>
<td>UG/L</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>Cobalt</td>
<td>UG/L</td>
<td>1.10</td>
<td>2.64</td>
</tr>
<tr>
<td>Dissolved Cobalt</td>
<td>UG/L</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Chromium</td>
<td>UG/L</td>
<td>5.13</td>
<td>12.25</td>
</tr>
<tr>
<td>Dissolved Chromium</td>
<td>UG/L</td>
<td>1.54</td>
<td>0.84</td>
</tr>
<tr>
<td>Copper</td>
<td>UG/L</td>
<td>4.39</td>
<td>8.99</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>UG/L</td>
<td>4.32</td>
<td>2.40</td>
</tr>
<tr>
<td>Iron</td>
<td>UG/L</td>
<td>1386.80</td>
<td>3624.30</td>
</tr>
<tr>
<td>Dissolved Iron</td>
<td>UG/L</td>
<td>15.11</td>
<td>5.50</td>
</tr>
<tr>
<td>Manganese</td>
<td>UG/L</td>
<td>51.21</td>
<td>144.25</td>
</tr>
<tr>
<td>Dissolved Manganese</td>
<td>UG/L</td>
<td>2.36</td>
<td>0.37</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>UG/L</td>
<td>0.46</td>
<td>0.34</td>
</tr>
<tr>
<td>Dissolved Molybdenum</td>
<td>UG/L</td>
<td>0.57</td>
<td>0.42</td>
</tr>
<tr>
<td>Nickel</td>
<td>UG/L</td>
<td>7.57</td>
<td>18.54</td>
</tr>
<tr>
<td>Dissolved Nickel</td>
<td>UG/L</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Lead</td>
<td>UG/L</td>
<td>0.64</td>
<td>1.59</td>
</tr>
<tr>
<td>Dissolved Lead</td>
<td>UG/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Antimony</td>
<td>UG/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Dissolved Antimony</td>
<td>UG/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Selenium</td>
<td>UG/L</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Dissolved Selenium</td>
<td>UG/L</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Thallium</td>
<td>UG/L</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Dissolved Thallium</td>
<td>UG/L</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Vanadium</td>
<td>UG/L</td>
<td>3.70</td>
<td>8.83</td>
</tr>
<tr>
<td>Dissolved Vanadium</td>
<td>UG/L</td>
<td>1.33</td>
<td>1.31</td>
</tr>
<tr>
<td>Zinc</td>
<td>UG/L</td>
<td>31.43</td>
<td>32.29</td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>UG/L</td>
<td>6.40</td>
<td>3.72</td>
</tr>
<tr>
<td>Mercury</td>
<td>UG/L</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Dissolved Mercury</td>
<td>UG/L</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Volatile Organic Compounds</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Semi Volatile Organic Compounds</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

(1) Two additional sampling events will be conducted during the 2010/2011 winter season as per the Synthetic Turf Stormwater Quality Monitoring and Sampling Plan (2/2/10).

(2) Used field duplicate value

(3) California Maximum Contaminant Levels (MCL)

(4) Secondary MCL

(5) California Department of Public Health notification level
September 30, 2010

The Honorable Nancy Floreen, President
Montgomery County Council
Council Office Building
100 Maryland Avenue
Rockville, Maryland 20850

Dear Council President Floreen,

The Western Montgomery County Citizens Advisory Board (the “CAB”) examined the issues and concerns raised by members of the community at our June 21, 2010 meeting regarding the installation of artificial turf fields at Montgomery County high schools and public parks. The concerns raised by the community centered on the impact artificial turf fields may have on the environment, student health, and County finances.

Based on the concerns raised by the community members, the full CAB deliberated on this issue at its July 19, 2010 meeting and recommends that the Montgomery County Council address the following key points:

1) A full life cycle cost analysis of artificial turf field installation should be undertaken by the County, which should include an analysis of all costs associated with maintenance, replacement, and disposal. This analysis will assist the County in determining the true future financial commitment that artificial turf fields will entail.

2) The County, with partners like the Environmental Protection Agency, Montgomery County Public Schools, and the Montgomery County Department of Parks, should embark on a rigorous collection and review of existing scientific data, and new studies, if necessary, to fully understand the effects of artificial turf fields on:
 a) the safety and health of students and athletes using the fields; specifically problems associated with excessively high temperatures during summer months and increases in the rate and severity of sport injuries.
 b) the environment: specifically toxic chemicals in stormwater runoff and toxic particulates in the air.
The Honorable Nancy Floreen, President
Montgomery County Council
Page 2

We are grateful to the County Council’s Transportation, Infrastructure, Energy and Environment (T&E) Committee for initiating a dialogue about the risks posed by the installation of artificial turfs in the County high schools and parks. As the County continues to study the effects of artificial turf fields, we encourage them to keep in mind specific concerns raised by members of the community to the CAB.

Please contact us should you have any questions or like any additional information.

Sincerely,

Sue F. Knapp
Chair

SFK/kpt

cc: Montgomery County Councilmembers
June 17, 2010

The Honorable Isiah Leggett
Montgomery County Executive
101 Monroe Street
Rockville, Maryland 20850

Ms. Mary Bradford, Director
Montgomery County Department of Parks
9500 Brunett Avenue
Silver Spring, Maryland 20901

Dear Mr. Leggett and Ms. Bradford:

I am writing on behalf of the Mid-County Citizens Advisory Board (MCCAB) to express our concerns about the proposed use of artificial turf fields by Montgomery County Public Schools and the Montgomery County Department of Parks. At its April 20, 2010 meeting, we heard from members of the community about their concerns about the proposed installation of artificial turf football fields at Wheaton High School, other public schools, and parks. Among the concerns expressed were negative impacts on the environment, student health, and County finances.

I asked the MCCAB’s Quality of Life Committee to examine these issues. Based on these deliberations, and a final discussion at our June 15th meeting, the MCCAB recommends the following actions be taken:

The Montgomery County Government (MCG) should place a moratorium on further construction of artificial turf fields in parks, schools and recreational areas until the environmental, health and financial impacts of these fields are better understood.

Although research on the environmental impacts of artificial turf fields is limited, there appears to be reason for concern. Artificial turf fields being installed in Montgomery County include the use of old tires. A single field installation includes the depositing of 120 tons of pulverized automobile tires and hundreds of tons of rock on County land. As a result phthalates and other harmful materials may be contaminating the ground and water. Additional concerns have been raised in the sports medicine community with high air temperatures on artificial turf fields. Again, research appears to be inconclusive, but the lack of conclusive research bolsters the need for caution before exposing young athletes and others to potential risk.

As you are well aware the County is facing unprecedented fiscal challenges. Although apparent savings on field maintenance may make artificial turf fields an attractive option, we urge the County to exercise caution. A review of literature indicates that the environmental and public health impacts of artificial turf fields are poorly understood, with many questions left unanswered. With such questions unanswered, it would seem difficult to determine exactly what future financial commitments the County is making with further artificial turf field construction.
A moratorium on construction would allow the County more time to deliberate and allow time for the science to "catch up". Therefore the MCCAB urges a moratorium on further artificial turf field construction on all MCG owned properties.

As always, thank you for your consideration and continued leadership.

Sincerely,

Sheldon Fishman
Chair

cc: Montgomery County Council
 Gabriel Albornoz, Department of Recreation
Montgomery County Stormwater Partners Network
Resolution on Sustainable Athletic Field Construction and Maintenance

Whereas the problem that athletic field directors and managers seek to address is the poor condition of many of our rectangular grass fields and their degradation after extensive hours of play in all weather conditions;

Whereas typically such fields have been composed of sod laid on native clay soil and maintained with chemical fertilizers.

Whereas one “solution” being aggressively promoted, artificial turf, is a rug of plastic blades attached to a coated plastic mat and infilled with a couple of inches of pulverized used tires.

Whereas both the plastic rug and synthetic rubber infill pose documented water pollution problems and other environmental and public health hazards;

Whereas grass is the safer, healthier, environmentally beneficial, more cost-effective option preferred by professional and amateur athletes and coaches; and

Whereas grass provides oxygen, absorbs carbon dioxide, is sustainable and renewable;

Whereas grass fields can always be converted to artificial turf but artificial turf, with its parking lot-like base—tons of dirt removed and tons of rocks trucked in—cannot be easily or cost effectively converted back to grass.

Whereas greater durability, drainage, and water pollution prevention can be achieved by installing a sand-cap grass field and maintaining it organically, as we know from the experience of others,¹ and irrigation as needed may be done with water collected in cisterns from stormwater run-off,

Be it therefore resolved that the Stormwater Partners asks Montgomery County Department of Parks, Montgomery County Public Schools, and other County land management agencies, to:

- Pilot one or more grass fields using the best 21st century techniques for installation and organic maintenance that have been documented to work;
- Install no additional rubber and plastic fields while the natural grass fields are being fully piloted using best available practices, and thereafter only where grass cannot grow, e.g., indoors, in full shade, or a temporary surface on asphalt, and using safer, biodegradable alternatives to rubber infill.

¹ Branford, CT, Alex Palluzzi, in 30 years’ experience with athletic fields has perfected organic maintenance. E-mail correspondence. Also see http://zip06.theday.com/blogs/the_sound/archive/2008/11/20/hammer-time.aspx and http://www.beyondpesticides.org/lawn/activist/BranfordCTpolicy.pdf in Shore Publishing.
• Compare full life cycle cost of organically-maintained natural turf fields versus artificial turf fields, to include disposal costs of artificial turf.
• Create financing mechanisms that include annual maintenance costs in the budget so as not to artificially select for expensive plastic fields.
• Include testing of field leachate and runoff discharges for zinc, phthalates, and lead.
• Publish on the County’s web site the results of the organic and artificial turf water pollution discharge tests and life cycle costing studies.

Further Be It Known that:

Plastic artificial turf can become hot enough to burn players and to contribute to “heat island” effect, while a grass field remains cooler than air because of transpiration;

Used tire crumbs are documented to contain carcinogens, mutagens, neurotoxins, liver, kidney, and endocrine disruptors, phthalates, and may contain the neurotoxin lead.

Water beads up and rolls off the crumbs and plastic backing rather than percolating into the ground, creating a polluted runoff problem and potentially carrying toxins leached from the tire crumb and plastic into streams;

Zinc from the pulverized truck tires when discharged or leached from artificial turf fields is particularly harmful to plants and aquatic life;

Antimicrobial rinses used to decontaminate the field and fabric softener to fluff up the blades (if used) are also potential contaminates in our waterways;

In as few as 8 years, artificial turf fields experiencing the heavy use intended will face disposal as hazardous waste at significant cost;

Contact: Anne Ambler: anambler@gmail.com or Kathy Michels: Kathleen.Michels@verizon.net 7.1.2010

Additional resources:
www.athenasmi.org/projects/docs/UCC_project_ATHENA_technical_paper.pdf (report with methodology for determining that 1861 trees must be planted to offset the carbon footprint of one 9,000 sq. m artificial turf playing field.)

3 See The Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires, August 2007.

Solid Waste Advisory Committee (SWAC)
Annual Meeting with the County Executive
February 10, 2011

We appreciate the opportunity to share the concerns of the Solid Waste Advisory Committee and are grateful for the emphasis that the County Executive continues to place on reducing the impact of solid waste on the environment. While not immune from fiscal challenges, DSWS provides critical public services: reliable, safe and timely waste collection and responsible disposal is a key component of our way of life here in Montgomery County. We understand the extreme budget pressures that the County is currently facing, but strongly support sustaining DSWS funding for the FY12 budget.

For many years Montgomery County has provided a leadership role in the areas of recycling, reclamation and disposal of solid waste materials. This leadership role has positioned the county to take on four new solid waste challenges:

1. Artificial Turf
2. Food Recycling
3. Re-development of the Gude Landfill
4. Collaboration/Efficiency/Money Saving Opportunities

Each of these areas are addressed in more detail in Attachment A. We welcome the potential to engage with the County Council or other entities to further these visionary ideas.

All the opportunities discussed in the Attachment A are focused on the same result – reducing the amount of solid waste that enters the waste stream and reducing the impact at our landfills – the result being reduced costs, longer landfill life, and reduced need to send the effluent of Montgomery County to other areas. This will help us enhance the sense of stewardship that we should have for the land, water, and air that makes up our county.

We continue to rely on, and believe in, the continued mission of the DEP’s community education, focusing in 2012 on multiple family housing complexes in an effort to bring them up to the same standards and expectations placed and enforced upon owners of single family homes.

We appreciate the continued support of our efforts, and look forward to continued opportunity to serve our county.
Attachment A

Opportunity 1 – Artificial Turf – This is a major solid waste issue facing the county today, and one on which Montgomery County has an opportunity to take a leadership role. SWAC has identified 24 football-sized artificial turf installations in Montgomery County (most comprised of private school athletic fields and private athletic businesses) and an additional 150 installations of 4-5,000 square feet installed on private property. As the warranted life of the large fields is only 8 years, and each is comprised of roughly 350,000 pounds of turf and rubber material that cannot be recycled or incinerated, the impact on the County’s landfills could be enormous. (Please refer to accompanying charts for additional detail.)

SWAC is looking to the Executive and County Council for support in collaborative efforts with other County organizations and agencies to:

1. Identify and inventory all artificial turf fields currently installed and those with outstanding permits. This will allow SWAC to size the challenge and forecast removal of materials.
2. Manage the ongoing installation and removal of artificial fields, including creating a process for handling the component materials at the Transfer Station. The county needs to capture the opportunity at the entry and exit point.
3. Work with industry experts to stay apprised of latest developments and recommendations in installation, removal and recyclability of these materials.
4. Develop true life cycle models (financial and environmental) for artificial turf fields in order to develop recommendations for County-owned fields.
5. Work with DEP to create community education plan.

Opportunity 2 – Food Recycling – SWAC will be exploring the potential for a food recycling plan, similar to that recently announced in Los Angeles, wherein excess edible food is diverted from the waste stream to homeless shelters and food banks. This opportunity can address two pressing problems – alleviating hunger amongst disadvantaged Montgomery County residents, and reducing the amount of material sent to the waste transfer station.

SWAC is looking to the Executive and County Council for support in collaborative efforts with other County organizations and agencies to:

1. Identify potential sources of excess food (e.g., schools, restaurants, grocery stores).
2. Identify potential recipients of excess food.
3. Work with business, community and county organizations to develop a plan for food redistribution, acknowledging and compensating for, in law and code, the contributions of the businesses and private organizations toward this voluntary effort.
4. Work with partner organizations to help create community education plan.
5. Make the necessary changes to health codes and safety laws allowing private and business organizations to cooperate with government in a mutually advantageous arrangement.
Opportunity 3 – Redevelopment of the Gude Landfill. SWAC will continue to work with DSWS in developing a comprehensive approach to the Gude Landfill Property Remediation and Re-use plan.

SWAC is looking to the Executive and County Council for support in collaborative efforts with other County organizations and agencies to:

1. Identify potential for valuable resources within the landfill
2. Determine feasibility of ‘harvesting’ resources.
3. Determine potential for ‘selling’ property with requirement for remediation prior to development.
4. Create a “ball park” cost estimate for different remediation scenarios.

Opportunity 4 – Collaboration/Efficiencies/Money Saving Opportunities

SWAC believes there are efficiencies that can be gained from teaming the efforts of DEP, MNNCP and MCPS to maximize the potential for recycling retrieval from county, park and school public areas by aggregating resources from all three organizations.

SWAC is looking to the Executive and County Council for support in collaborative efforts with other County organizations and agencies to:

1. Identify potential areas for collaboration; e.g., mapping existing recycling pickup routes and destinations for parks and schools
2. Determining additional recycling contributions from expanded programs.

Thank you for your continued support of our efforts. SWAC believes that these four key initiatives will allow Montgomery County to continue to play a leadership role in saving our planet.
Additional Information related to Artificial Turf

(Fields are football or soccer sized – 1.2 acres)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Status</th>
<th>Designation</th>
<th>Number of Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullis School</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Church of the Little Flower</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Georgetown Prep (?)</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Good Counsel</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Holton Arms</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Landon School</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Montgomery Blair</td>
<td>Constructed</td>
<td>MCPS</td>
<td>1</td>
</tr>
<tr>
<td>Our Lady of Lourdes</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Richard Montgomery</td>
<td>Constructed</td>
<td>MCPS</td>
<td>1</td>
</tr>
<tr>
<td>Soccer Plex</td>
<td>Constructed</td>
<td>Public/Private Partner</td>
<td>3</td>
</tr>
<tr>
<td>St Andrew</td>
<td>Constructed</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Walter Johnson</td>
<td>Constructed</td>
<td>MCPS</td>
<td>1</td>
</tr>
<tr>
<td>Holy Child</td>
<td>Under Construction</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>The German School</td>
<td>Plan in Review</td>
<td>Private School</td>
<td>1</td>
</tr>
<tr>
<td>Fairland Regional Park</td>
<td>Constructed</td>
<td>MNNCP</td>
<td>1</td>
</tr>
<tr>
<td>Holy Redeemer Church</td>
<td>Under Construction</td>
<td>Private</td>
<td>1</td>
</tr>
<tr>
<td>Mater Dei</td>
<td>Under Construction</td>
<td>Private</td>
<td>1</td>
</tr>
<tr>
<td>Champions Field House</td>
<td>Constructed</td>
<td>Private Business</td>
<td>3</td>
</tr>
<tr>
<td>Rockville Soccer Plex</td>
<td>Constructed</td>
<td>Private Business</td>
<td>3</td>
</tr>
</tbody>
</table>

List is considered accurate but not complete.

Interesting Statistics for Each Field

Per Joe Murphy – On Deck Sports 1/10/2011

Removal costs = 50 cents per square foot
3-10 pounds of infill per square foot
80,000 square feet of turf – pulverized used tires
Turf weight and rubber = 350,000 pounds
Sand + Turf + rubber = almost 1,000,000 pounds

While we are still researching the age of the current installations, the warranted life of these fields is only 8 years. Within the next five years, it is anticipated that at least 5 of the football sized fields will be replaced, yielding a minimum of 1,750,000 pounds of rubber.
Artificial turf has the potential to be re-used, but currently cannot be recycled or incinerated. Contractors will have the ability to re-use/re-sell some portion of the removed material (e.g., sand and rubber crumb).

Montgomery County owned property is a small percentage of the total installed base. Montgomery County numbers confirmed with CUPF 1/20/2011.

Private homeowner Artificial Turf Installations

Reference sites per truegreensports.com

<table>
<thead>
<tr>
<th>Location</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potomac, MD</td>
<td>14</td>
</tr>
<tr>
<td>Bethesda</td>
<td>7</td>
</tr>
<tr>
<td>Rockville</td>
<td>5</td>
</tr>
<tr>
<td>N. Potomac</td>
<td>1</td>
</tr>
<tr>
<td>Germantown</td>
<td>1</td>
</tr>
<tr>
<td>Silver Spring</td>
<td>1</td>
</tr>
<tr>
<td>Gaithersburg</td>
<td>1</td>
</tr>
</tbody>
</table>

- Per Bob Speinke (True Green Sports) – 1/10/2011 We have approximately 150 installations in Montgomery County. The average size is 4-5000 square feet.
- Truegreen replaces, on average, 3 fields per year, resulting in a minimum of 15,000 square feet sent to landfill. All materials are transferred to the Waste Transfer Station.

List does not include private/commercial indoor putting greens, tennis courts and batting cages.

Research has not been completed for in-line skating facilities and retirement communities.
PART 1 GENERAL

1.01 SCOPE OF WORK

A. It shall be the responsibility of the successful turf contractor to provide all labor, materials, equipment and tools necessary for the complete installation of a synthetic grass material. The system shall consist of, but not necessarily be limited to, the following:
 1. A complete synthetic grass system consisting of a minimum height 2-1/4 inch tall fiber.
 2. A resilient infill system, consisting of sand and rubber as specified in this section. The infill shall be filled so that there is a void of no greater than ¾” to the top of the fiber.

B. The Turf Contractor shall coordinate all activities with the City Contractor. The City Contractor will provide temporary fencing, access to potable water, sanitary facilities, and unimpeded access to the work site. The turf contractor shall be responsible for all other applicable General Condition requirements identified in the drawings and specifications referenced in paragraph 1.04B of this Document.

1.02 DEFINITIONS

For the purposes of this specification section, the following definitions shall apply:

A. "Turf Contractor" means the Turf Company awarded this Contract or its subcontractor(s) who will furnish and install the Synthetic Grass System in conformance with the terms and conditions of this Contract.

B. "City Contractor" means a separate contractor, under separate agreement, hired by the City, who shall be performing work at the project site contemporaneously with the Turf Contractor.

C. "The Turf Company" shall mean the Synthetic Grass System manufacturer and/or supplier awarded this contract.

D. "Synthetic Grass System" means the turf infill material, backing material, turf fibers, and field striping specified in this Contract Document and resulting in a synthetic turf field suitable for recreational sports in a heavily-used, urban environment.

E. "Owner" shall mean the City Fields Foundation.

F. "City" shall be City and County of San Francisco.

1.03 JOB CONDITIONS

A. The Turf Contractor shall be responsible for reviewing the base and ensuring it conforms to the project requirements prior to placement of the synthetic turf. Turf Contractor shall provide written verification to the Owner’s Representative that the base installation is acceptable and meets their requirements prior to installing their turf.

B. Playing field subgrade preparation shall be completed and accepted by the Owner’s representative prior to commencement of work under this section.

1.04 REFERENCES

Attachment 2 - Montgomery County Review of Fields
Attachment 2 - Montgomery County Review of Fields
Attachment 2 - Montgomery County Review of Fields
Packet Page #133
A. ASTM Standard Test Methods:
1. D1335 - Standard Test Method for Tuft Bind of Pile Yarn Floor Coverings (is this the same as the old D1338?)
2. D1577 - Standard Test Method for Linear Density of Textile Fiber
4. D4491 - Standard Test Methods for Water Permeability of Geotextiles by Permittivity
5. D5034 - Standard Test Method of Breaking Strength and Elongation of Textile Fabrics (Grab Test)
6. D5848 - Standard Test Method for Mass per Unit Area of Pile Yarn Floor Covering

B. Specifications/Drawings:

C. Current National Federation of High School (NFHS) Soccer, Football, Men’s and Women’s Lacrosse, Baseball, Softball rules, as applicable.

1.05 TURF QUALIFICATIONS

A. The Turf Contractor shall be required to submit information from the synthetic turf installer and/or manufacturer as required in Section 01300 that complies with the following:
1. The Turf Contractor and/or the Turf Company must be experienced in both the manufacturing and installation of the specified type of synthetic in-filled turf system.
2. For the purpose of meeting these qualifications, the type of rubber and sand are determining factors in meeting these installation qualifications. No alternative in-fills will be allowed.
3. The Turf Contractor must provide competent workmen skilled in this specific type of synthetic turf installation. The designated Supervisory personnel on the project must be certified as competent in the installation of this material, including sewing seams and proper installation of the infill mixture. The manufacturer shall have a representative on site to certify the installation and warranty compliance.
4. All designs, markings, layouts, and materials shall conform to all current NFHS standards as specified that may apply to this type of synthetic turf installation.
5. The foreman installing the synthetic turf must have installed at least twenty (20) fields in the last three (3) years.
6. The Turf Company must provide competent workmen, skilled in this specific type of in-filled synthetic grass installation. The designated supervisory personnel on the project must be certified in writing by the turf manufacturer as competent in the installation of this material, including sewing seams and proper installation of the infill mixture. The manufacturer shall have a representative on site to certify the installation and warranty compliance.
7. The Turf Company must have certified crews and may not use outside, independent contractors for the installation.
8. The Turf Company must possess an active California D-12 Synthetic Products license in good standing, and have never had a license revoked.
9. The Turf Company must not have had a Surety or Bonding Company finish work on any contract within the last five (5) years.
10. The Turf Contractor shall provide written certification from the Turf Contractor and/or the Manufacturer that the proposed Synthetic Grass System does not violate any patent and that the Turf Contractor and/or the Manufacturer will indemnify, defend, and hold the City harmless from any claims arising out of or relating to patent, trademark, or copyright.
infringement for the use of any proposed Synthetic Grass System installed by the Turf Contractor.

11. The terms and conditions of this Contract and applicable law mandate the payment of a prevailing rate of wage to all workers, including those engaged in the installation of the Synthetic Grass System. The Owner shall enforce the prevailing wage for each appropriate trade based on the type of work performed. Prevailing wage rates shall comply with the rules and regulations established by both state and local contracting law.

12. The Turf Company must not have been disqualified or barred from performing work for any public owner or other contracting entity in the U.S.

1.06 SUBMITTALS

A. Submit two complete samples, a minimum of 8” x 11” inch size, consisting of the exact proposed product. In addition, submit two loose samples (one foot squares) of the turf backing and tufted fibers and two sets of one quart samples of the following:
 1. Specified Sand Infill
 2. Specified Rubber Infill

B. Submit manufacturer’s installation instructions.

C. The turf manufacturer shall submit a project specific letter on the company letterhead certifying that the products of this section meet or exceed all specified requirements, and state that the installer has complied with the qualifications above and is certified by the manufacturer to install this type of synthetic turf.

D. Submit Drawings for:
 1. Seaming plan.
 2. Installation details; edge detail, utility box detail, etc.
 3. Field Layout and Striping Plan (including field colors), including field line layouts (including colors), etc.
 4. The Turf Manufacturer shall submit color samples for approval for all color and/or logo work, including final electronic versions of artwork.

E. Certified copies of independent (third-party) laboratory reports on ASTM tests as follows:
 1. Pile Height, Face Width & Total Fabric Weight, ASTM D5848
 2. Primary & Secondary Backing Weights, ASTM D5848
 3. Tuft Bind, ASTM D1335
 4. Grab Tear Strength, ASTM D5034
 5. Water Permeability, ASTM D1551
 6. Flame Resistance, ASTM F1551
 7. Tuft Yarn Tensile Strength and Elongation, ASTM D2256

F. Submit a copy of the 8-year (minimum), prepaid, non-prorated, third-party insured warranty and insurance policy information.

G. Submit a list providing project name, date the field installation was approved, size of field, contact names and telephone numbers for each project that meets the experience requirements identified in 1.05-A.1 above.

H. At time of bid, Turf Contractor and /or Turf Manufacturer shall submit the following corporate information:
 1. Audited Financial Statement
 2. Proof of liability insurance including the amount of coverage and expiration date. Information shall be provided directly from Turf Contractor and /or Turf Manufacturer insurance company.
 3. List of Majority Owners (If privately held) and Board of Directors
4. Provide proof of EPLI

1.07 WARRANTY

A. The Turf Company shall submit its Manufacturer’s Warranty which guarantees the usability and playability of the synthetic turf system for its intended uses for a minimum eight (8) year period commencing with the date of Substantial Completion. The warranty coverage shall not be prorated nor limited to the amount of the usage.

B. The warranty submitted must have the following characteristics:
1. A non-prorated, non-cancelable, up-front, pre-paid, third-party insured warranty. Warranty shall be covered by a third party insurance policy, non-cancelable and pre-paid, and is in effect covering this installation, and underwritten by a Best “A” Rated (or better) Insurance Carrier listed in the A.M. Best Key Rating Guide.
2. Insurance carrier must confirm that the policy is in force and premiums prepaid for entire warranty duration in full.
3. The policy must include a minimum annual aggregate of $5,000,000 per year and be based on claims arising from fields installed and completed only during the policy year.
4. The policy must provide full coverage for eight (8) years (minimum) from the date of Notice of Completion.
5. The policy shall cover all costs associated with full field replacement with new equal or better turf material, including labor, materials and any other costs to repair or replace the field.
6. Owner shall not be responsible for any deductible.
7. Warranty shall have no restrictions on hourly use limitations as long as the primary athletic use on the field is as anticipated in the original design. Turf Contractor shall include in the cost of the turf replacement of high use areas such as but not limited to home plate, batter’s box, pitcher’s mound, first, second, third, base areas, goal mouth’s of soccer pitch’s, etc. up to two times during the warranty period at a time of the warranty holder’s discretion.
8. Must warrant materials and workmanship, and that the materials installed meet or exceed the product specifications, including general wear and damage caused from UV degradation.
9. Must have a provision to either make a cash refund or repair or replace such portions of the installed materials that are no longer serviceable to maintain a serviceable and playable surface.
10. Must be a warranty from a single source covering workmanship and all self-manufactured or procured materials.
11. Guarantee the availability of replacement material for the synthetic turf system installed for the full warranty period.
12. Turf must maintain an ASTM F355 G-Max of less than 170 for the life of the warranty.
13. The name on the warranty shall be made out to the City and County of San Francisco.
14. The Turf Company must verify that its onsite representative has inspected the installation and that the work conforms to the Manufacturer’s requirements. The Manufacturer will submit written certification that the policy is in effect, fully funded and that the installation is added to the policy upon completion and acceptance.

1.08 BURDEN OF PROOF

A. Within this section, burden of proof of compliance with all requirements rests solely with the submitting Turf Company and or Turf Contractor, not with the City, Owner, Designer, or City Contractor.

PART 2 MATERIALS

2.01 INFILL SYNTHETIC TURF
A. The carpet shall be delivered in 15-foot wide rolls. The perimeter white and yellow lines can be tufted into the individual sideline rolls. The rolls shall be of sufficient length to extend from sideline to sideline. Head seams, between the sidelines, will not be acceptable.

B. All field of play lines for soccer, including soccer penalty kick circle, shall be inlaid or tufted. The lines for soccer, including soccer penalty kick circle, shall be yellow.

C. All field of play lines for Men’s Lacrosse, including team and official areas, shall be inlaid or tufted. The lines shall be light blue.

D. All field of play lines for Women’s Lacrosse, including team and official areas, shall be inlaid or tufted. The lines shall be red.

E. All field of play lines for football (except hash marks, which can be painted) shall be inlaid or tufted. The lines for football shall be maroon.

F. All field of play lines for baseball, shall be inlaid or tufted. The lines, bases, pitchers rubber shall be white. All infield areas as designated on plan are terra cotta in color.

G. All field of play lines for softball, shall be inlaid or tufted. The lines shall be white.

H. Rubber shall be provided per product specification, and shall be cryogenically processed SBR rubber. All rubber shall be a homogenous black color and uniform size, and shall be clean of any impurities or material other than approved rubber.

I. All SBR rubber shall come from California recycled tires. The Turf Company shall provide documentation certifying the SBR source and the calculation of how many tires were recycled.

Sand shall be rounded silica sand and dust free. Coarse jagged sand will not be accepted. Sand shall consist of 60-70% of the total infill material as defined by weight. The sand shall have the following gradation:

<table>
<thead>
<tr>
<th>Sieves (US Mesh Size)</th>
<th>% Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>10-30</td>
</tr>
<tr>
<td>30</td>
<td>30-50</td>
</tr>
<tr>
<td>35</td>
<td>15-35</td>
</tr>
<tr>
<td>40</td>
<td>5-15</td>
</tr>
<tr>
<td>50</td>
<td><5</td>
</tr>
<tr>
<td>70</td>
<td><1</td>
</tr>
</tbody>
</table>

J. The specified infill shall be no less than a uniform ¾” depth below the top of fibers.

K. Thread for sewing seams of turf shall be as recommended by the Synthetic Turf Manufacturer.

L. Glue for inlaying lines and markings shall be as recommended by the Synthetic Turf Manufacturer.

2.02 SYNTHETIC TURF MAINTENANCE EQUIPMENT (GROOMER AND SWEEPER)

A. Turf Contractor shall supply one field groomer (min. 12’ wide model) and one sweeper (3 piece gang unit). Sweeper to have a debris collection attachment that shall pick up ¼” diameter (and
larger) material, but leave infill material (i.e. sand and rubber). The groomer shall have plastic
brushes and metal tines that are adjustable.

B. Acceptable grooming product is Synthetic Turf Groomer w/ Greens Slicer Spring Tine Rake, as
manufactured by Greens Groomer Worldwide, Ph: (888) 298-8852, or acceptable equivalent
product.

C. The field sweeper shall be the Agrifab sweeper as available from the manufacturer, (phone 1-800-
724-2969) or acceptable equivalent product.

2.03 END-OF-LIFE RECYCLING PLANS

A. The Turf Company , with their bid proposal, shall provide detailed plans for the management of all
turf product components at the end of their useful life, including:
1) Manner of reuse/recycling for each product component
2) Identification of parties responsible for the removal and disposal of the field products.
3) A detailed description of the reuse or recycling process.
4) A signed commitment from the winning proposal’s signatory guaranteeing implementation of
the plan within seven (7) years of the contract ratification.
5) These plans shall not include incineration, or any other type of high temperature conversion
technology.
6) These plans shall not include the use of synthetic turf as Alternate Daily Cover.
7) Using the discarded synthetic turf in either of these methods may impact a firm’s future
opportunities for the contracting of synthetic turf fields.

2.04 POST CONSUMER RECYCLED CONTENT

A. All synthetic turf purchased for installation and use on San Francisco City property will include
recycled content to the maximum extent feasible.
1) The Turf Company will provide the amount and type of recycled content in the turf product.
2) Proposals that do not include recycled content must provide an explanation as to why it was
omitted and describe plans and timeline for inclusion of recycled content in the future.

2.05 HEAVY METALS AND MATERIAL CONTENT

A. The Turf Company will conduct and submit product analysis with the project bid. Analysis will be
presented in the form of current, certified laboratory results using specified standards and
processes.

B. Analytical Methodologies: Representative samples of the turf fibers, turf backing, and infill material
shall be analyzed for total metals content and semi-volatile organic compounds (SVOCs), as well as
select analyses for leachable metals concentrations.

1) Total Metals Analysis: All samples (fibers, infill, underlayment and backing) shall be analyzed
for the California Assessment Manual 17/Title 26 list of metals (CAM 17 metals). The
submitted samples shall be prepared by the laboratory for analysis of total recoverable
metals by USEPA method 3050B. The samples shall then be analyzed for total metals
concentrations by USEPA method 6010B/7400.

2) Leachable Metals Analysis: Infill samples only shall be analyzed for leachability of selected
metals using the California Waste Extraction Test (WET). All samples shall be analyzed by the
WET for lead, zinc, and total chromium. For other constituents, if the detected concentrations
from the total metals analysis above are greater than or equal to ten times the Soluble
Threshold Limit Concentration (STLC) value, as shown on attached Table B, the WET shall be
conducted for those individual metals as well.

3) Analysis for SVOCs: All samples (fibers, infill, underlayment, backing) shall be analyzed for
the SW-846 list of SVOCs. The submitted samples shall be prepared by the laboratory for
C. Evaluation Criteria: The detected concentrations of lead, chromium, and zinc in the samples of the turf infill material shall not exceed the threshold values listed in Table A & B for total metals and leachable metals analyses. In no case shall the total metal concentration of any metal equal or exceed the TTLC values. In addition, concentrations of metals detected in any leachate tests shall not exceed the STLC value (for threshold values, see California Code of Regulations, Title 22, Chapter 11, Article 3.)

TABLE A. Maximum levels of metals permitted for San Francisco synthetic turf products – recycled styrene butadiene rubber (SBR) infill materials

<table>
<thead>
<tr>
<th>Metal</th>
<th>Total metals analysis (mg/kg)</th>
<th>Leachable metals analysis (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>750i,ii</td>
<td>50</td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>Zinc</td>
<td>23,000iii</td>
<td>250,000iv</td>
</tr>
</tbody>
</table>

i. San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Level (ESL) for residential land use for compounds detected in shallow soils where groundwater is a current or potential source of drinking water. See: [Link](http://www.swrcb.ca.gov/rwqcb2/esl.shtml)

ii. No total chromium value promulgated in ESLs; chromium III value indicated instead.

iii. California Human Health Screening Levels (CHHSLs) for soil for residential land use.

iv. Selected soluble threshold limit concentration (STLC).

TABLE B. Maximum levels of total metals permitted for San Francisco synthetic turf products – fibers, underlayment, and backing

<table>
<thead>
<tr>
<th>Metal</th>
<th>Total metals analysis (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>25</td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
</tr>
</tbody>
</table>

2.06 **BROMINATED FLAME RETARDANTS**

A. The Turf Company shall provide verification that brominated flame retardants have not been intentionally added in the manufacture of the turf fiber, backing, underlayment or infill materials. Verification can take the form of a signed letter from the manufacturer, or appropriate laboratory analyses of the product proving that levels of elemental bromine are lower than 1% by weight.

PART 3 EXECUTION

3.01 INSTALLING THE SYNTHETIC TURF

A. The installation shall be performed in full compliance with the reviewed and accepted product submittal.
B. Only trained technicians, skilled in the installation of athletic caliber synthetic turf systems working under the direct supervision of the approved installer/manufacturer supervisors, shall undertake any cutting, sewing, gluing, shearing, topdressing or brushing operations.

C. The Turf Contractor shall strictly adhere to the installation procedures outlined in this section. Any

D. The turf manufacturer and installation subcontractor shall inspect and accept in writing the field base section and drainage, and provide documentation to that effect, prior to the installation of the synthetic grass system. The surface must be perfectly clean as installation commences and shall be maintained in that condition throughout the process.

E. **Brock to be installed by the City Contractor timing to be coordinated between City Contractor and Turf Contractor.** The carpet rolls are to be installed directly over the properly installed manufactured base material. Refer to the synthetic turf base specification section. No equipment with loads greater than 35 pounds per square inch (35 psi) shall be allowed on the field. As required, Turf Contractor is responsible for altering operations in order to adhere to this requirement. Turf Contractor and synthetic turf installer shall strictly adhere to the written instructions provided by the Brock manufacturer for installing turf on top of their product. Turf Contractor shall always make sure that those vehicles being used on Brock bases are equipped with pneumatic (air-filled) tires, preferably turf tires. These tires are designed to spread loads and minimize damage to surface. Foam Filled or solid tires as well as tires with aggressive lug patterns should not be used on the Brock base, without synthetic turf installed. If possible, use of an A-frame for unrolling of the synthetic turf is strongly recommended.

F. The carpet rolls are to be installed directly over the properly prepared base. Extreme care should be taken to avoid disturbing the base, both in regard to compaction and planarity. It is suggested that a 2-5 ton static roller is on site and available to repair and properly compact any disturbed areas of the prepared base. If repairs are required, they shall be coordinated with the City Contractor prior to repair.

G. The full width rolls shall be laid out across the width of the field. Utilizing standard state of the art sewing procedures each roll shall be attached to the next. When all of the rolls of the playing surface have been installed, the sideline areas shall be installed at right angles to the playing field turf. **GLUING OF ROLLS SHALL NOT BE ACCEPTABLE.**

H. Seams shall not be visible and shall be flat, tight and permanent with no separation or fraying. Seams that show after installation shall be repaired prior to final project completion at no cost to the Owner.

I. The synthetic turf field shall utilize sewn seams. Minimum gluing will only be permitted to repair problem areas, corner completions, and to cut in any logos or inlaid lines as required by the specifications. Seams between turf panels must be sewn. Inlaid markings may not be installed by means of cutting through the fabric and adhering the colored turf to a separate reinforcing tape or cloth. Rather, inlaid markings (that cannot be tufted into the fabric), shall be installed by means of shearing out the existing green fiber and laying in a new piece of colored fabric into a bed of suitable “hot melt” adhesive placed directly on the original turf backing material. Systems that cut through the turf fabric for inlaid lines are not acceptable due to the fact that such a procedure shall weaken the structural integrity of the turf fabric backing. All seams shall be sewn using double bagger stitches and polyester thread or adhered using seaming tape and high grade adhesive (per the manufacturer’s standard procedures). Seams shall be flat, tight, and permanent with no separation or fraying.
J. Connections of the perimeter synthetic turf edges shall be completed by one of the following two methods (refer to drawings for applicable details):
 1) Connection to perimeter concrete edges (with recessed edge) with the manufacturer-approved adhesive.
 2) Connection to the recycled plastic header boards shall be done with industrial staples (min. depth embedment is one inch (1”) at maximum 2 inch (2”) on center staple spacing. Header board will be installed by the City Contractor.

K. Infill materials shall be applied in thin lifts. The turf shall be brushed as the mixture is applied. The infill material shall be installed to a depth as specified in this section. The mix shall be uniform and even in thickness to assure proper playing characteristics. The infill material shall not be installed during wet conditions.

L. The infill materials shall be installed to fill the voids between the fibers and allow the fibers to remain vertical and non-directional. The infill shall be placed so that there is a void of ¾” to the top of the fibers.

M. At near Substantial Completion of the synthetic turf fields, the Turf Contractor shall test for shock absorbency. The turf contractor and/or manufacturer shall pay for an independent testing laboratory accredited for such tests (who shall be pre-approved by the Owner’s Representative). All testing and analysis of findings shall be completed by qualified persons utilizing correct techniques. The laboratory shall provide the necessary testing data to the Owner’s Representative that verifies the finished field meets or exceeds the required shock attenuation. The G-max range shall be between 95 and 170 for the life of the warranty, as determined by the ASTM F355A and F1936 test procedures. Any test results that do not meet the requirements of this specification or if any one test value is greater than ten percent (10%) greater in variance as specified in 1.07B-12, then the Turf Contractor’s field installer shall address the failed test area, be required to retest the entire field as stated above, and conform to these requirements prior to the issuance of the Certificate of Substantial Completion.

PROTECTION AND CLEANING

A. Protect installed synthetic turf from subsequent construction operations and the public until Substantial Completion.

B. Do not permit traffic over unprotected turf surface.

C. Turf Contractor shall provide the labor, supplies, and equipment as necessary for final cleaning of surfaces and installed items.

D. All usable remnants of new material shall become the property of the City.

E. The Turf Contractor shall keep the area clean throughout the project and clear of debris.

3.02 MAINTENANCE & WARRANTY

A. The turf installer and/or the turf manufacturer must provide the following prior to Final Acceptance and the Owner’s Representative filing the Project Notice of Completion:
 1. The turf manufacturer shall provide the written warranty for the project per the minimum requirements identified in this specification section. Submit Manufacturer Warranty and ensure that forms have been completed in Owner’s name and registered with Manufacturer and Insurance Carrier. Submit information confirming that the third party
insurance policy, non-cancelable and pre-paid, is in effect covering this installation, and underwritten by a Best “A” Rated Insurance Carrier. Insurance carrier must confirm that the policy is in force and premiums paid.

2. Three (3) copies of Maintenance Manuals, which will include all necessary instructions for the proper care and preventive maintenance of the turf system, including painting and markings.

3. Project Record Documents: Record actual locations of seams and other pertinent information.

4. Upon completion of the field installation, the turf installation contractor shall have a supervisory personnel provide a minimum three (3) hour field training seminar with the Owner’s Representative on how to care for the field. At a minimum, seminar shall include a demonstration of how to care for the field with the provided groomer / sweeper address use of the sweeper and groomer, review the entire provided maintenance manual (including the proper procedure for removal of gum and other debris) and answer any questions.

5. Supply a field groomer and/or sweeper as specified.

6. The Contractor shall achieve Substantial Completion for the work under this Contract when the Project is ready and available for use as a playfield.

7. Provide surplus materials of 500 lbs of rubber infill material. Rubber material shall be delivered in 90 gallon wheeled totes.

B. Turf Manufacturer shall be responsible for the testing of the G-max levels of the installed synthetic turf at the completion of years two, four, six, and one month prior to the completion of year eight. If any of these tests do not fall within the G-max range as specified in this specification section, the Manufacturer will be required to modify the field composition to the sole satisfaction of the Owner’s Representative so that it falls within the target G-max range. All costs associated with such work shall be borne solely by the Manufacturer and/or installer. Any failed test shall be retested to verify that the field meets the specifications. All testing shall be paid by the Manufacturer and/or installer. All testing shall be completed by an independent testing laboratory accredited for such tests, and shall be pre-approved by the Owner’s Representative. All testing and analysis of findings shall be completed by qualified persons utilizing the required techniques outlined in the ASTM F355 test standard.

END OF SECTION
Appendix M:

MEMORANDUM

To: Recreation and Park Commission
Thru: Phil Ginsberg, General Manager
From: Dan Mauer, Capital Division
Cc: Chris Geiger, Ph.D, Department of the Environment
 Paul Ledesma, Department of the Environment
 Patrick Hannan, City Fields Foundation
Date: 7/8/09
Re: Synthetic Turf Standards – Information Only

On October 2, 2008, the San Francisco Recreation and Park Commission approved the recommendations in the Synthetic Playfield Task Force Report. As part of Recreation and Parks’ ongoing implementation of those recommendations, we’ve collaborated with the Department of the Environment and the City Fields Foundation to develop standards for synthetic turf purchases for San Francisco Recreation and Parks athletic fields being renovated with synthetic turf.

This memo is for information only. The Department of the Environment is the agency issuing the synthetic turf standards and there is no action for the commission to take today. The Kimbell Playground athletic field renovation will be the first project to use the new synthetic turf standards.

Background

The Department of the Environment’s Chris Geiger, Ph.D - the Municipal Toxics Reduction Coordinator, and Paul Ledesma – the City Government Zero Waste Coordinator, were instrumental in developing heavy metal, recycling and recycled content standards for synthetic turf. These standards include general purchasing requirements previously established by resolution at the Board of Supervisors.
In issuing these standards, San Francisco will become the first known municipality in the nation to require recyclability as well as recycled content in synthetic turf purchases. The high amount of recycled content in styrene butadiene rubber (SBR) infill is a primary factor in the SF Department of the Environment’s ongoing support for using SBR rubber in local synthetic turf fields.

Lead is the primary heavy metal to be addressed by the heavy metal standards, with Chromium a distant second. The primary goal is to filter out products that have purposely added lead chromate or other lead compounds to the turf components.

Zinc is the primary concern in the recycled tire SBR infill. Zinc oxide is purposefully added to tires at rates of up to 2% or more. It is not a major human health hazard but can be an aquatic toxicity hazard if the tires sit in water for a long time. In 2008, the Synthetic Playfields Task Force reviewed the existing scientific literature and fully discussed this hazard with regard to synthetic turf. The task force determined that there is no imminent risk of aquatic toxicity but, as a precautionary measure, the SF Public Utilities Commission staff will test runoff levels at a representative field. We are initiating those tests. The task force also recommended installing synthetic turf fields above the water table and using a criteria based site selection process to determine the potential public health benefits of an installation.

San Francisco Synthetic Turf Standards

The synthetic turf standards fall into three general categories: end-of-life recycling plans, post-consumer recycled content and heavy metal and material content. Potential vendors will be required to provide the information when submitting project bids. Any bids with incomplete information or insufficient data will be rejected.

End-of-Life Recycling Plans

Potential vendors will be required to provide detailed plans for the management of all turf product components at the end of their useful life, including:

a. Manner of reuse/recycling for each product component
b. Identification of parties responsible for the removal and disposal of the field products.
 c. A description of the reuse or recycling process.
d. A signed commitment from the winning proposal’s signatory guaranteeing implementation of the plan within seven (7) years of the contract ratification.
e. These plans shall not include incineration, or any other type of high temperature conversion technology.
f. These plans shall not include the use of synthetic turf as Alternate Daily Cover.
g. Using the discarded synthetic turf in either of these methods may impact a firm’s future opportunities for the contracting of synthetic turf fields.

Post Consumer Recycled Content

All synthetic turf purchased by San Francisco will include recycled content to the maximum extent feasible.

a. Potential vendors will provide the amount and type of recycled content in the turf product.
b. Proposals that do not include recycled content must provide an explanation as to why it was omitted and describe plans for inclusion of recycled content in the future.

Heavy Metals and Material Content

Potential vendors will conduct and submit product analysis with the project bid. Analysis will be presented in the form of certified laboratory results using specified standards and processes.

Analytical Methodologies: Representative samples of the turf fibers, turf backing, and infill material shall be analyzed for total metals content and semi-volatile organic compounds (SVOCs), as well as select analyses for leachable metals concentrations.

1) **Total Metals Analysis:** *All samples* (fibers, infill, underlayment and backing) shall be analyzed for the California Assessment Manual 17/Title 26 list of metals (CAM 17 metals). The submitted samples shall be prepared by the laboratory for analysis of total recoverable metals by USEPA method 3050B. The samples shall then be analyzed for total metals concentrations by USEPA method 6010B/7400.

2) **Leachable Metals Analysis:** *Infill samples only* shall be analyzed for leachability of selected metals using the California Waste Extraction Test (WET). All samples shall be analyzed by the WET for lead, zinc, and total chromium. For other constituents, if the detected concentrations from the total metals analysis above are greater than or equal to ten times the Soluble Threshold Limit Concentration (STLC) value, as shown on attached Table B, the WET shall be conducted for those individual metals as well.

3) **Analysis for SVOCs:** *All samples* (fibers, infill, underlayment, backing,) shall be analyzed for the SW-846 list of SVOCs. The submitted samples shall be prepared by the laboratory for analysis by USEPA method 3540 or 3550. The samples shall then be analyzed for SVOC concentrations by USEPA method 8270B or 8270C. Results shall at a minimum include data for aniline (CAS #62-53-3), phenol (108-95-2) and benzothiazole (95-16-9). Concentrations of SVOCs are to be provided for reference purposes only and are not being evaluated against any particular criteria.
Evaluation Criteria: The detected concentrations of lead, chromium, and zinc in the samples of the turf and the cushioning material shall not exceed the threshold values listed in Table A-C for total metals and leachable metals analyses. In no case shall the total metal concentration of any metal equal or exceed the TTLC values. In addition, concentrations of metals detected in any leachate tests shall not exceed the STLC value (for threshold values, see California Code of Regulations, Title 22, Chapter 11, Article 3.)

Brominated flame retardants

Vendor shall provide verification that brominated flame retardants have not been intentionally added in the manufacture of the turf fiber, backing, underlayment or infill materials. Verification can take the form of a signed letter from the manufacturer, or appropriate laboratory analyses of the product proving that levels of elemental bromine are lower than 1% by weight.

TABLE A. Maximum levels of metals permitted for San Francisco synthetic turf products – recycled styrene butadiene rubber (SBR) infill materials

<table>
<thead>
<tr>
<th>Metal</th>
<th>Total metals analysis (mg/kg)</th>
<th>Leachable metals analysis (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>750<sup>iii</sup></td>
<td>50<sup>i</sup></td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
<td>2.5<sup>i</sup></td>
</tr>
<tr>
<td>Zinc</td>
<td>23,000<sup>iii</sup></td>
<td>250,000<sup>iv</sup></td>
</tr>
</tbody>
</table>

i. San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Level (ESL) for residential land use for compounds detected in shallow soils where groundwater is a current or potential source of drinking water. See: http://www.swrcb.ca.gov/rwqcb2/esl.shtml

ii. No total chromium value promulgated in ESLs; chromium III value indicated instead.

iii. California Human Health Screening Levels (CHHSLs) for soil for residential land use.

iv. Selected soluble threshold limit concentration (STLC).
TABLE B. Maximum levels of metals permitted for San Francisco synthetic turf products – non-SBR infill materials

<table>
<thead>
<tr>
<th>Metal</th>
<th>Total metals analysis (mg/kg)</th>
<th>Leachable metals analysis (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>750<sup>iii</sup></td>
<td>50<sup>i</sup></td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
<td>2.5<sup>i</sup></td>
</tr>
<tr>
<td>Zinc</td>
<td>23,000<sup>iii</sup></td>
<td>81<sup>i</sup></td>
</tr>
</tbody>
</table>

i. San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Level (ESL) for residential land use for compounds detected in shallow soils where groundwater is a current or potential source of drinking water. See: http://www.swrcb.ca.gov/rwqcb2/esl.shtml

ii. No total chromium value promulgated in ESLs; chromium III value indicated instead.

iii. California Human Health Screening Levels (CHHSLs) for soil for residential land use.

TABLE C. Maximum levels of total metals permitted for San Francisco synthetic turf products – fibers, underlayment, and backing

<table>
<thead>
<tr>
<th>Metal</th>
<th>Total metals analysis (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>25</td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
</tr>
</tbody>
</table>
Alternative Infill Summary

<table>
<thead>
<tr>
<th>Type of Alternative Infill</th>
<th>Material</th>
<th>Typical Infill Life Expectancy</th>
<th>Shape</th>
<th>Wear Resistant</th>
<th>UV Stability</th>
<th>Expected Life Span</th>
<th>Shock Pad (Recommended)</th>
<th>Color</th>
<th>Migration Required</th>
<th>Typical Fine Aggregate</th>
<th>Availability</th>
<th>Approximate Cost*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber</td>
<td>Styrene Butadiene Rubber or SBR</td>
<td>50% Sand 50% Rubber</td>
<td>Angular shaped granules</td>
<td>Low</td>
<td>Stable</td>
<td>Life of Carpet</td>
<td>No</td>
<td>Typical Infilled Turf Field</td>
<td>No</td>
<td>2.25” to 2.50”</td>
<td>Readily Available</td>
<td>$50,000 per field</td>
<td>Typical infill strategy</td>
</tr>
<tr>
<td>Nike Grid</td>
<td>Nike Environmentally Preferred Rubber (Meets or exceeds substance standards set for wearable consumer goods)</td>
<td>50% Sand 50% Rubber</td>
<td>Angular shaped granules</td>
<td>Low</td>
<td>Stable</td>
<td>Not proven long term for Nike. Expected life of 10 years of play at 40 hours per week</td>
<td>No</td>
<td>Multiple Colors</td>
<td>No</td>
<td>2.25” to 2.50”</td>
<td>Limited Availability</td>
<td>$130,000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
<tr>
<td>Organic (Gall)</td>
<td>Material is harvested from a cork oak every nine years</td>
<td>10% - 20% Cork Granules 60% to 85% Sand</td>
<td>Angular shaped granules</td>
<td>Low</td>
<td>Low Stability</td>
<td>Not proven long term (See Comments)</td>
<td>Natural appearance (tan/brown)</td>
<td>Yes</td>
<td>No</td>
<td>1.50” to 2.50”</td>
<td>Limited Availability</td>
<td>$80,000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
<tr>
<td>Theraplastic Instamark (TPM)</td>
<td>Extruded plastic pellets</td>
<td>50% TPM/50% Sand</td>
<td>Typically Uniform pellets (Shape depends on manufacturer)</td>
<td>Low to Medium</td>
<td>Stable</td>
<td>Not proven long term (See Comments)</td>
<td>Custom colors available</td>
<td>No</td>
<td>No</td>
<td>1.50” to 2.50”</td>
<td>Limited Availability</td>
<td>$60,0000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
<tr>
<td>Coated Proportioned Natural Rubber (CPR)</td>
<td>Vita rubber produced for all athletic fields only</td>
<td>50% Sand 50% SIS/PE</td>
<td>Angular shaped Granules</td>
<td>Low</td>
<td>Medium Stability</td>
<td>Not proven long term (See Comments)</td>
<td>Custom colors available</td>
<td>No</td>
<td>No</td>
<td>2.25” to 2.50”</td>
<td>Limited Availability</td>
<td>$40,00000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
<tr>
<td>Envirolat</td>
<td>Coated Silica Sand Based System</td>
<td>100% Silica Sand Particles</td>
<td>Fairly Round Particles</td>
<td>High</td>
<td>Stable</td>
<td>16 Year Warrentee (See Comment)</td>
<td>Yes (See Comments)</td>
<td>Green</td>
<td>No</td>
<td>1.50” to 2.50”</td>
<td>Limited Availability</td>
<td>$150,000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
<tr>
<td>Silica Sand</td>
<td>Silica Sand Based System</td>
<td>100% Silica Sand Particles</td>
<td>Rounded Particles</td>
<td>High</td>
<td>Stable</td>
<td>Life of Carpet</td>
<td>Yes (See Comments)</td>
<td>Tan/Brown</td>
<td>No</td>
<td>1.50” to 2.50”</td>
<td>Limited Availability</td>
<td>$650,000 in addition to cost of crumb rubber</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Information provided was compiled by available online data and conversations with turf and infill distributors. Gale has not conducted any independent testing of infill materials and does not guarantee the accuracy of information provided herein.
- Market varies based on demand and availability.

Prices do not include irrigation, reporting of early degradation and floating of particles. Each shock pad can be used to provide shock absorption.

Elastomer Extruded (TPE):
- Virgin produced for infill of athletic fields only
- 50% Sand 50% SIS/PE
- Angular shaped Granules
- Low to Medium Stability
- Not proven long term (See Comments)
- Custom colors available
- No
- 2.25” to 2.50”
- Limited Availability
- $400,0000 in addition to cost of crumb rubber

Ethylen Diene Monomer Rubber (MDM):
- Virgin produced for infill of athletic fields only
- 50% Sand 50% EPDM
- Angular shaped Granules
- Low Stability
- Not proven long term (See Comments)
- Custom colors available
- No
- 2.25” to 2.50”
- Limited Availability
- $400,0000 in addition to cost of crumb rubber

Silica Sand
- Silica Sand Based System
- 100% Silica Sand Particles
- Rounded Particles
- High
- Stable
- Life of Carpet
- Yes (See Comments)
- Tan/Brown
- No
- 1.50” to 2.50”
- Limited Availability
- $650,000 in addition to cost of crumb rubber

Notes:
- Prices do not include irrigation ports of early degradation and floating of particles.
- Shock pad can be used to provide shock absorption.
- Thatch layer is suggested to help reduce fly up. Shape infill is not required, some owners have used combination of shock pad and 125" to reduce cost of infill.
- Shock pad is reported to last shorter than a warrantee period.
- Shock pad can be used to provide shock absorption.
G-MAX TEST REPORT

DESCRIPTION

An independent analysis of AstroTurf synthetic turf relative to G-max was requested by the client. The Test was performed by a Licensed Professional Engineer at the below referenced location with ASTM certified and calibrated equipment. The Test Methods are as follows;

The particulars of this on-site analysis are described below.

TEST INFORMATION

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Test Date</th>
<th>Time of Test</th>
<th>Weather</th>
<th>Field Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone Bridge High School</td>
<td>8-5-15</td>
<td>7:30</td>
<td>Sun 79</td>
<td>Football/Soccer – monofilament sand/rubber</td>
</tr>
<tr>
<td>Site address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43100 Hay Rd., Ashburn, VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onsite G-max Test - 10 Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Temp</td>
<td></td>
<td></td>
<td></td>
<td>82°F Average</td>
</tr>
</tbody>
</table>

TEST RESULTS

The following test results indicate G-max values for ten individual locations with three separate tests performed at each location. A table has been provided indicating the values associated with each test and a location map showing the ten individual tests at designated and described locations. *The test results reported herein reflects the conditions of the tested field at the time and temperatures noted.*

TEST CONCLUSION

The Indoor Synthetic Turf Athletic Field at Stone Bridge High School as characterized above and in the following report has been verified to be in compliance and meets the requirements for play based on the specifications as referenced in ASTM F1936-10 with all locations below the maximum allowable limit of 200.

Stone Bridge High School

Overall G-max = 115

APPROVED BY - RYAN TEETER, PE - LDD Sports
G-MAX TEST REPORT

Stone Bridge High School

<table>
<thead>
<tr>
<th>Test Location</th>
<th>Specific Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N Goal line at center of field</td>
</tr>
<tr>
<td>2</td>
<td>N Back of Endzone at center of field</td>
</tr>
<tr>
<td>3</td>
<td>NW 10 yd line at the numbers</td>
</tr>
<tr>
<td>4</td>
<td>NW 25 yd line at the hash mark</td>
</tr>
<tr>
<td>5</td>
<td>Midfield at Centerfield</td>
</tr>
<tr>
<td>6</td>
<td>SE 25 yd line at the numbers</td>
</tr>
<tr>
<td>7</td>
<td>S 12 yd line at the center of the field</td>
</tr>
<tr>
<td>8</td>
<td>S back of Endzone at center of field</td>
</tr>
<tr>
<td>9</td>
<td>SW 37 yd line at the hash mark</td>
</tr>
<tr>
<td>10</td>
<td>East sideline at midfield</td>
</tr>
</tbody>
</table>

G-max Values - 1st Field 08/05/2015

<table>
<thead>
<tr>
<th>Test Location</th>
<th>Drop 1</th>
<th>Drop 2</th>
<th>Drop 3</th>
<th>Average</th>
<th>Infill Depth (mm)</th>
<th>Field Temp (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103</td>
<td>115</td>
<td>120</td>
<td>117.50</td>
<td>44</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>109</td>
<td>112</td>
<td>110.50</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>115</td>
<td>119</td>
<td>117.00</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>109</td>
<td>112</td>
<td>110.50</td>
<td>44</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>111</td>
<td>123</td>
<td>125</td>
<td>124.00</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>120</td>
<td>124</td>
<td>122.00</td>
<td>44</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>106</td>
<td>116</td>
<td>119</td>
<td>117.50</td>
<td>45</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>89</td>
<td>106</td>
<td>113</td>
<td>109.50</td>
<td>44</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>102</td>
<td>115</td>
<td>116</td>
<td>115.50</td>
<td>47</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>109</td>
<td>112</td>
<td>110.50</td>
<td>44</td>
<td>82</td>
</tr>
</tbody>
</table>

Overall Avg G-max of Field area: 115.45

Diagram

- Test Locations labeled from 1 to 10
- Specific Location Descriptions provided for each location
- Field orientation indicated with N and arrow

G-MAX TEST REPORT

Location #1

Location #2

Location #3

Location #4

Location #5

Location #6

Location #7

Location #8

Location #9

Location #10
SECTION 32 18 23.19
SYNTHETIC TURF SYSTEM

PART 1 - GENERAL

1.1 GENERAL PROVISIONS

A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.

1.2 GENERAL REQUIREMENTS

A. It is the intent of this specification to specify an Infilled Synthetic Turf System that provides a high quality playing surface for multi-purpose athletic uses installed by experienced crews under the direct supervision of an experienced foreman/superintendent. The finished surfaces shall be immediately firm, and stable while providing long term durability, safety, and shock attenuation. The Infilled Synthetic Turf System Manufacturer's attention is called to the testing requirements related to G-Max rating per ASTM F 355, current addition. A G-Max rating of less than 110 or in excess of 160 at any one time from acceptance through the end of the Warranty Period is unacceptable. As a result, the following minimum requirements must be met by all turf systems to be favorably considered:

1. The synthetic turf installation shall be performed by a company which has been in business continuously for a period of a minimum of five years under the same name and with at least five years experience in the supply and installation of the type of materials specified herein on projects of comparable size to this Project.

2. The synthetic turf manufacturer/installer must have completed a minimum of 60 outdoor installations, each in excess of 80,000 S.F. incorporating a tufted polyethylene infilled turf system.

3. The synthetic turf manufacturer/installer must have completed a minimum of 30 outdoor high school or college installations, each in excess of 80,000 SF incorporating the monofilament synthetic turf system proposed for this project in compliance with this specification. Minor variations in fiber length and infill design in projects cited for experience are acceptable.

4. The synthetic turf installer crew foreman shall be a full-time employee of the turf supplier, and shall have installed at least 20 similar infilled turf installations.

5. The General Contractor shall submit a list of previously installed projects by the proposed Synthetic Turf Manufacturer/Installer, along with crew and foreman qualifications with their bid that demonstrates compliance with the minimum requirements of this section, Part 1.2.A, Paragraph 1-4, above.

1.3 DESCRIPTION OF WORK

A. Provide an inspection and certification of subsurface drainage system and Free Draining Base prior to commencement of subsequent work.
B. Furnish and install an Infilled Synthetic Turf System including free draining base, monofilament polyethylene fibers with nominal height of 2.5 inches woven into a high quality polyurethane coated backing, and resilient sand and rubber infill mix.

C. Provide infiltration testing by means of Dual-Ring Infiltrometer at a minimum of four locations after completion of Free Draining Finishing Stone layer.

D. Provide tufted, inlaid and painted lines and markings or other such graphics as described herein and shown on the Drawings.

E. Provide all attachments and penetrations as required to complete the work as shown on the Drawings, all in full compliance with VHSL and NFHS rules for the intended sports.

F. Provide an eight year warranty and field maintenance training.

G. Provide a Third Party Insured Warranty as further described within this section.

1.4 RELATED WORK

A. Examine Contract Documents for requirements that affect work of this Section. Other Specification Sections that directly relate to work of this Section include, but are not limited to:

1. Section 31 20 00 – Earth Moving
2. Section 31 23 00 – Excavation and Fill
3. Section 32 13 13 - Site Concrete
4. Section 33 41 00 - Storm Drainage

1.5 REFERENCES

A. References herein to any technical society, organization, group or body are made in accordance with the following abbreviations and, unless otherwise noted or specified, all work under Section shall conform to the latest edition of each as applicable:

2. Virginia High School League (VHSL)
3. Nation Federation of State High School Associations (NFHS)

B. Comply with applicable requirements of the following standards. Where these standards conflict with other specified requirements, the most restrictive requirement shall govern.

 b) D 5034 Grab Breaking Strength
 c) D 418 Pile Height, Tuft Spacing, Face Weight and Total Weight
1.6 SUBMITTALS

A. Manufacturer's Literature

1. Submit a signed statement from the Infilled Synthetic Turf System Manufacturer that the Drawings and Specifications have been reviewed by a qualified representative of the Infilled Synthetic Turf System Manufacturer and major materials suppliers, and that they are in agreement that the materials and installation method to be used for the Infilled Synthetic Turf System are proper and adequate for use as a multi-purpose athletic field in the Commonwealth of Virginia.

2. A recent reference list of at least 30 outdoor high school or college installations, each in excess of 80,000 S.F. incorporating the monofilament synthetic turf system proposed for this project in compliance with this specification. Minor variations in infill design in projects cited for experience are acceptable.

3. A recent reference list of at least 60 outdoor installations, each in excess of 80,000 SF incorporating a tufted polyethylene infilled turf system.

4. Job resumes of Infilled Synthetic Turf System Manufacturer's Installation Supervisor (showing supervision of at least 20 similar infilled turf installations) and Infilled Synthetic Turf System Installers.

5. Cut Sheets for all materials required under this Section including third party ASTM certified lab reports.

6. Manufacturer's written warranties for all individual components of the Infilled Synthetic Turf System.

7. Provide a written 8-year labor and materials warranty from the Infilled Synthetic Turf System Manufacturer.

8. Provide a Written Third Party Insured Warranty.

9. A signed letter on turf manufacturer company letterhead holding the Owner, Designer and all other project consultants harmless for any violation of patent rights or infringements.

B. Shop Drawings

1. Provide details which illustrate the scope of work, including but not limited to materials, cross sections, subsurface and penetration details. Include product data for electrical outlet box within the synthetic turf.

2. Provide a carpet seaming plan.
3. Supply shop drawings (including details) at an approved scale for location, installation, and erection of the synthetic turf anchoring system.

4. Provide a striping plan for all intended sports which includes layout for soccer, football, and tick marks for boy's lacrosse in compliance with NFHS, VHSL, and U.S. Lacrosse requirements and the drawings for approval by the Owner and designer. Striping plan shall also include school letters at mid-field, in accordance with the Contract Drawings. Letters are to use stock colors that match school colors as closely as possible.

C. Product Samples and Information

1. Provide color samples of manufacturer's standard monofilament polyethylene fiber for approval.

2. Provide color samples of custom pantone monofilament polyethylene fiber for approval.

3. Provide a minimum of 12 by 12 inches sample of monofilament polyethylene carpet. Provide additional carpet samples for other colors required under this Section.

4. Provide 12-inch long sample of seaming tape.

5. Provide certified sieve analysis of sand and rubber infill materials for approval.

6. Provide a 1-quart sample of the infill mix at the Designer's approved mix ratio.

7. Provide information regarding future requirements for painting of field surface.

D. Mock Up

Upon approval of Infilled Synthetic Turf System materials, construct a 6 by 6 feet or larger mock up panel on site for approval of the Designer. The mock up shall include one sewn seam, one 4 inches wide tufted white line, one 4 inches wide inlaid yellow line, and two 4 by 4 inches reference tick marks. The mock up panel should be representative in every way of the composition, strength, color and texture of the material to be assembled on-site and may be tested for comparison with submitted test data and to establish a datum performance for subsequent site quality control purposes.

E. Delivery slips for all infilled Synthetic Turf System materials delivered to the site.

F. Provide three copies of the synthetic turf manufacturer's Maintenance Manual to the Owner. The synthetic turf manufacturer shall also provide the necessary instructions and training for proper care and preventative maintenance of the synthetic turf system.

G. Manufacturer's Review

1. Submit written statement, signed by the synthetic field manufacturer/installer stating that the Drawings and Specifications have been reviewed by qualified representatives of the synthetic turf manufacturer, and that they are in agreement that the materials and system, including drainage, to be used for synthetic field surfacing are proper and adequate for the applications shown.

2. The synthetic turf manufacturer/installer shall submit prior to installation a certificate stating that it is not aware of any aspects of the proposed synthetic turf system to be
installed which knowingly violate any patented materials or methods and that the manufacturer fully indemnifies the Owner and Designer from any liability arising out of any issue related to patent infringement.

H. Substrate Acceptability

Submit a certified statement issued by the synthetic field surfacing materials Supplier/Installer, attesting that all areas and surfaces designated to receive synthetic field surfacing have been inspected and found satisfactory for the reception of the Work covered under this Section; and are not in conflict with the "Warranty" requirements as stated herein. Installation of synthetic field surfacing materials may not commence until final acceptance of finished crushed stone/aggregate base has been received by the Engineer.

I. Statement of Supervision

Upon completion of the Work, submit a written statement signed by the Synthetic Turf Manufacturer/Installer stating that the field supervision of the manufacturer's representative was sufficient to insure proper application of the materials, that the Work was installed in accordance with the Contract Documents, and that the installation is acceptable to the manufacturer.

J. Synthetic Turf Manufacturer/Installer shall provide a written statement that their product is lead free prior to installation.

K. Provide resume and experience of person completing the laser grading of the free draining and finishing stone.

1.7 QUALITY ASSURANCE

A. Experience

1. The synthetic turf installation shall be performed by a company which has been in business continuously for a period of a minimum of five years under the same name and with at least five years experience in the supply and installation of the type of materials specified herein on projects of comparable size to this Project.

2. The synthetic turf manufacturer/installer must have completed a minimum of 30 outdoor high school or college installations, each in excess of 80,000 S.F. incorporating the monofilament synthetic turf system proposed for this project in compliance with this specification. Minor variations in infill design in projects cited for experience are acceptable.

3. The synthetic turf manufacturer/installer must have completed a minimum of 60 outdoor installations, each in excess of 80,000 S.F. incorporating a tufted polyethylene infilled turf system.

4. The synthetic turf installer crew foreman shall be a full-time employee of the turf supplier, and shall have installed at least 20 similar infilled turf installations.

B. Inspection and Acceptance: The Infilled Synthetic Turf System Manufacturer/Installer and General Contractor shall inspect the subgrade and drainage system to verify their acceptance of installation and condition in writing. The turf manufacturer/installer shall include in their cost sufficient site visits during sub base and base construction, along with any testing they require.
to determine the adequacy of the drainage and base construction. Commencement of subsequent installation in a given work area indicates acceptance of underlying substrates and systems. Testing of drainage capacity shall be by Dual Ring Infiltrometer at a minimum of four locations after completion of free draining finishing stone. The Owner's testing and inspection consultant shall be present for these testing operations.

C. Planarity and Grade: Deviation in planarity of the Free Draining Finishing Stone layer and finished surface shall not exceed 1/8 inch beneath a 10-foot straightedge. Deviation from a straight grade between levels on drawings shall not exceed 1/8 inch.

D. Protection: Heavy equipment, dual articulating vehicles, lulls, or vehicles of any kind without flotation tires shall not be allowed on the field area subsequent to the completion of the drainage system.

E. Restoration of Damage: Infilled Synthetic Turf System Installer shall exercise care in the execution of this work and avoid damage or defacement of adjacent or surrounding areas by using suitable protective means. Damage or defacement which occurs shall be remedied at Infilled Synthetic Turf Manufacturer's cost to the satisfaction of the Owner.

1.8 TESTING AND INSPECTION

A. The Owner shall engage a materials testing agency. The testing agency will observe the aggregate placement, concrete placement, drainage product installation, backfill, compaction and moisture tests. Weekly testing results shall be provided to the Owner and Designer for review. Submission of testing results will be a requirement for the processing of partial payment requests.

B. The Owner's Geotechnical Engineer of Record will conduct the field infiltration test per ASTM D 3385, Standard Test Method for Infiltration Rate of Soils in Field using a Dual-Ring Infiltrometer or an equivalent percolation test to affirm the subsurface drainage system's water permeability rates.

C. In addition to the required Dual-Ring Infiltrometer testing, the Contractor shall verify that the subsurface drainage system is functioning properly prior to the commencement of the infilled synthetic turf system installation by thoroughly flooding the field in a minimum of three areas and verifying and recording flow from the drainage system outlet. This can also be accomplished by recording a naturally occurring rain event with greater than 1/2 inch of rainfall.

D. G-Max:

1. The General Contractor shall provide the necessary testing data to the Owner, verifying that the finished field meets the required shock attenuation (G-Max), as per ASTM F 355/F 1936: Immediately upon substantial completion, the General Contractor shall arrange for shock absorbency testing by a certified laboratory subject to approval by the Designer in accordance with ASTM F 335-Method A. Testing will be performed at a minimum of ten locations selected by the Designer. "In-house" laboratories with a business affiliation to the turf manufacturer and/or installer are unacceptable.

2. The average G-Max value at installation shall be between 110 and 140. The Synthetic Turf Installer, prior to acceptance, shall remedy an average G-Max value outside this range or individual reading more than 15 percent outside the range. Satisfactory G-Max testing shall be a fixed requirement for final acceptance of the synthetic turf installation.
3. At follow-up visits and over the life of the guarantee, the Synthetic Turf Manufacturer/Installer shall arrange and pay for annual re-testing of the field using the same procedure. The Synthetic Turf Manufacturer/Installer shall take whatever action is required to remedy any average G-Max value greater than 15 percent of the average value as installation, and to remedy any areas with individual reading over 160. These costs will be included in the turf unit price proposal. Over the life of the warranty, changes in the average G-Max that exceed ± 15 percent of the original installed system shall be remedied by the synthetic turf manufacturer/Installer within 30 days of the deficient test result.

1.9 WARRANTY

A. The Synthetic Turf Manufacturer/Installer shall provide a written warranty stating that all work executed under this section will be free from defects of material and workmanship for a period of eight years from date of Contract Substantial Completion, and that any defects will be remedied on written notice at no additional cost to the Owner. The warranty shall be in writing and shall be signed by the Installer and synthetic field surfacing materials manufacturer. Warranty shall include removal and replacement of materials as required, to repair synthetic field surfacing at no cost to the Owner. This Warranty must cover full 100% replacement value of total square footage installed. The Warranty shall not be prorated. Rather, it shall provide for the full replacement value of all defective aspects of the materials and/or installation throughout the entire life of the Warranty with no allowance for depreciation.

B. The warranty requirements of this section will not be modified or superseded by the issuance of a standard manufacturer's warranty at the acceptance of the field. Nothing contained in the manufacturer's written warranty or failure to provide a manufacturer's written warranty shall supersede or limit the contractual obligations in this Specification.

C. In addition to the manufacturer's/installer's warranty described above, the synthetic turf manufacturer will provide the Owner with a third party insurance policy acceptable to the Owner, pre-paid for a full eight years and not cancelable, issued in the name of the Owner, by a US Insurance company with an A.M. Best rated "A-" or better, which provides the same warranty coverage established above, in the event that the turf manufacturer is unable or unwilling to provide the specified coverage. A copy of the policy and other evidence of its availability as necessary for evaluation by the Owner will be required prior to ordering of material and an executed policy in the Owner's name will be required prior to final payment. The aggregate claim amount shall exceed $5,000,000. Policies that include self-insurance or self-retention clauses shall not be considered.

1.10 FOLLOW-UP VISITS

A. The Turf Manufacturer/Installer shall include in their price, two follow-up visits at six month intervals after the Final Turf Inspection date. The visits shall be scheduled by the Owner or Engineer to conduct G-Max testing and inspect the condition of the synthetic turf, infill material, seams, painted lines, anchorage, and peripheral attachments. Items found to require repair, amendment, or replacement shall be the responsibility of the Turf Manufacturer/Installer. Repairs shall take place immediately upon notification by the Owner or the Engineer, as provided for by the warranty stipulated within this Specification.

B. G-Max testing shall comply with Section 1.8 of this specification.

PART 2 - PRODUCTS
2.1 GENERAL

A. This specification covers the installation of a new outdoor Infilled Synthetic Turf System comprised of tufted synthetic turf with a mixture of silica sand and cryogenic rubber filled into the pile. The installed system shall have a permeability rate in excess of 16 inches per hour. The tufted synthetic turf is comprised of monofilament fibers tufted into a urethane backed, porous carpet, meeting F.D. Doc FF1-70 and ASTM D 2859 flammability requirements, with an abrasion index of less than 25 per ASTM F 1015.

2.2 INFILLED SYNTHETIC TURF BASE AND DRAINAGE MATERIALS

A. Geotextile Fabric:

Non-woven polypropylene geotextile fabric shall be chemically and biologically inert and shall be Mirafi 140N or an approved equal.

B. Free Draining Crushed Stone:

1. Shall be VDOT #57 stone.

3. Free Draining Crushed Stone shall be fine graded to a tolerance of 1/4 inch in 10 feet when measured in any direction.

C. Free Draining Choker Stone:

1. Shall be VDOT #8 stone.

3. Free Draining Choker Stone shall be fine graded to a tolerance of 1/4 inch in 10 feet when measured in any direction.

D. Free Draining Finishing Stone:

1. Shall be a graded, granular, non-frost susceptible, free-drainage, and free of deleterious material. Gradation shall conform to the following requirements:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>% PASSING BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>55-65</td>
</tr>
<tr>
<td>No. 16</td>
<td>0-35</td>
</tr>
<tr>
<td>No. 30</td>
<td>0-20</td>
</tr>
</tbody>
</table>

3. Free Draining Finishing Stone shall be fine graded to a tolerance of 1/8 inch in 10 feet when measured in any direction.

4. Free Draining Finishing Stone shall drain at a rate of no less than 16 inches per hour after compaction. Testing of the stones infiltration rate shall be performed by the Owner's Geotechnical Engineer using a Dual-Ring Infiltrometer or an equivalent percolation test to affirm the subsurface drainage system's water permeability rates once the Free Draining Finishing Stone layer is completed. Testing shall be done at a minimum of three locations of which shall be selected by the Owner and/or Designer. If the test areas do not meet or exceed the required 16 inches per hour, additional tests may be required.

5. Free Draining finishing stone shall be graded with a dual-laser guided equipment. The equipment operator shall have laser graded a minimum of 20 fields.

2.3 INFILLED SYNTHETIC TURF SYSTEM

A. The turf system consists of the following components:

1. A vertical draining base of crushed stone consisting of a permeable layer of crushed aggregate topped by a choker stone layer and a permeable finishing course of finer crushed aggregate.

2. A synthetic turf carpet consisting of nominal 2.5 inches long polyethylene monofilament fiber, regardless of the turf system to be installed, tufted into a permeable double-layered primary backing with a secondary backing. The carpet is installed directly on the crushed stone base.

3. An infill system consisting of a mixture comprised of selected and graded dust-free silica sand and specially treated and mixed cryogenic ground rubber. The infill material fills the voids between the fibers allowing the fibers to remain vertical and non-directional. The infill is installed so as to leave approximately 3/4 inch of the tufts clear of the top of the infill.

B. Tufted Synthetic Turf

1. Fiber: minimum 2.5 inch long true monofilament extruded low friction fiber. The fiber shall have a spined or triangular cross section intended to resist "laydown". It must have the following properties:

<table>
<thead>
<tr>
<th>ASTM</th>
<th>PROPERTY</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1577</td>
<td>Denier (min.)</td>
<td>8000 nominal</td>
</tr>
<tr>
<td>D 418</td>
<td>Pile Height (min.)</td>
<td>2 1/2 inches nominal</td>
</tr>
</tbody>
</table>
a) Face yarn Type: Extruded monofilament custom blended polyethylene fiber
b) Yarn size: 8,000-10,000 denier (4, 6, or 8 end)
c) Yarn Thickness: 100 microns
d) Pile Height (Finished): 2.5 inches (63.5 mm)
e) Infill Height: 1 3/4 inches
f) Color: Green
g) Construction: broadloom tufted
h) Tufting Gauge: 3/8 to 3/4 inch
i) Total Product Weight: 78 oz/sy (+/- 2 oz)
j) Finished Roll Width: 15 feet (4.6 m)
k) Finished Roll Length: Up to 240 feet (73 m)

2. Backing:
a) Primary Carpet Backing: Double-layered UV-treated woven polypropylene, weighing approximately 8 oz./sq. yd.
b) Secondary Carpet Backing: Permeable application of high quality latex, heat activated to lock the fibers into the primary backing. Minimum 20 oz./s.y. urethane.

3. The Infilled Synthetic Turf Installer shall provide sewn seams. The sewn seams shall be performed with high strength chord suitable for attaching outdoor Infilled Synthetic Turf carpet. Seams shall be flat and indiscernible upon installation.

4. Rolls shall be a minimum of 15 feet wide. Rolls shall be of sufficient length to cover from sideline to sideline without head seams.

5. Tape for securing inlaid lines and reference tick marks in the Infilled Synthetic Turf shall be high quality coated cordura tape made specifically for Infilled Synthetic Turf applications with a minimum roll width of 15 inches.

6. Adhesives for bonding tufted synthetic turf shall be one part moisture cured polyurethane obtained from a single manufacturer and be equivalent to Nordot 34-G as manufactured by Synthetic Surfaces, Scotch Plains, NJ. Adhesive shall be modified with amendments as recommended by the manufacturer for installation during adverse weather conditions.

7. If the Infilled Synthetic Turf Manufacturer/Installer intends to modify any of the above criteria, it shall first be approved in writing by the Owner prior to submitting a bid and in
accordance with Section 001100- Invitation to Bid and Section 002100-Instruction to Bidders.

C. Drainage Characteristics

1. Perforation of the backing to allow for drainage with 3/16-inch (4.8 mm) holes on staggered 4 inches (102 mm) shall be allowed.

2. Minimum Permeability shall be 16 inches (508 mm) +/- per hour (w/infill in place)

D. Infill

1. Silica sand within the infill mix shall comprise between 45 percent and 55 percent by weight. The size specifications for sand to be used as infill are as follows:

 a) \(0.5 \text{ mm} < D_{50} < 0.7 \text{ mm}, \text{ or } 0.37 \text{ mm} < D_{10} < 0.45 \text{ mm}\)

 \[1.35 < D_{60}/D_{10} < 1.65\]

 \[0.90 < D_{30}^2/D_{10} D_{60} < 1.10\]

 b) Where \(D_x\) represents the grain size for which \(x\%\) of the sand is smaller. I.E., if \(D_{50} = 0.7 \text{ mm}\), this means that 50 percent of grains (by weight) are smaller than 0.7 mm.

 c) The sand should be whole-grain (not ground), sub-angular to rounded in shape (not angular), dry and dust free (i.e. when dropped, no cloud of dust should billow up).

 d) This kind of sand is usually obtained as filter sand, used in water filtration plants, as frac sand, used in the oil industry, or as foundry sand, used for metal casting.

 e) In the case of filter sand, \(D_{10}\) is referred to as the Effective Diameter (e.d.), and \(D_{60}/D_{10}\) is referred to as the Coefficient of Uniformity (c. u.).

 f) The following range of values for the sieve analysis is acceptable:

MILLIMETERS	MICRONS	US MESH	% RETAINED	% PASSING
1.19	1190	16	0%	100
0.84	840	20	0-10%	80-100
0.59	590	30	40-60%	40-60
0.42	420	40	40·60%	0-10
0.297	297	50	0%-10%	0

2. Rubber Crumb within the infill mix shall be produced in a cryogenic process and will meet the following size distribution and have a specific gravity of no less than 1.1:

 a) \(0.85 \text{ mm} < D_{50} < 0.95 \text{ mm}\)
1.35 < D_{60}/D_{10} < 1.70

0.80 < D_{30}^2 / D_{10}D_{60} < 1.20

b) Where D_x represents the grain size for which x% of the rubber is smaller. I.E., if D_{50} = 0.7 mm, this means that 50 percent of grains (by weight) are smaller than 0.7 mm.

c) The rubber must be cryogenically ground, must contain no fiber or metal, and must be dust-free. The shape of the rubber particles should be granular (edges should not be stringy). The following range of values for the sieve analysis is acceptable:

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>MICRONS</th>
<th>US MESH</th>
<th>% PASSING</th>
<th>% RETAINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>1700</td>
<td>12</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>1.41</td>
<td>1410</td>
<td>14</td>
<td>95-100%</td>
<td>0-5%</td>
</tr>
<tr>
<td>1.19</td>
<td>1190</td>
<td>16</td>
<td>85-100%</td>
<td>5-15%</td>
</tr>
<tr>
<td>0.84</td>
<td>840</td>
<td>20</td>
<td>35-50%</td>
<td>45-55%</td>
</tr>
<tr>
<td>0.59</td>
<td>590</td>
<td>30</td>
<td>0-15%</td>
<td>25-40%</td>
</tr>
<tr>
<td>0.42</td>
<td>420</td>
<td>40</td>
<td>Trace</td>
<td>0-15%</td>
</tr>
</tbody>
</table>

2.4 FIELD MARKING

A. Tufted and inlaid lines: shall be in colors as specified in the drawings and meet the above material specifications. Height of all inlaid lines shall be equal to that of the installed turf. Lines shall be tufted into the fabric to the extent possible and remaining shall be field inlaid. Provide all field lines and logos as indicated.

B. Marking Paint: Paint to be used on synthetic turf carpet shall be equivalent to synthetic turf paint manufactured by Pioneer Athletics or as recommended by manufacturer. The synthetic turf installer must submit a final striping plan for approval by the Owner and Engineer prior to installation of synthetic turf fields.

2.5 MAINTENANCE EQUIPMENT - FIELD GROOMER

A. The Contractor shall provide a Field Groomer for routinely brushing the field, which shall be a single unit of putting green quality. Drag-type broom unit shall be equivalent to Fieldspec 7-foot drag brush as manufactured by Sportsfield Specialties, as listed as acceptable per the manufacturer’s warranty. Prior to final payment on turf installation, the turf manufacturer shall provide training to the Owner's maintenance personnel for routine maintenance practices that should be performed on the synthetic turf field.

2.6 ELECTRICAL OUTLET BOX

A. The Contractor shall provide an electrical outlet within a designated electrical outlet box within the synthetic turf. The location of the box shall be in accordance with the Contract Drawings. The electrical box shall be the 3500.5 Combox as manufactured by Sportsfield Specialties, or approved equal.
PART 3 - EXECUTION

3.1 SUBGRADE PREPARATION

A. Subgrade shall be inspected by General Contractor by means of a laser level on a 10-foot grid pattern. Based on General Contractor's inspection of the topographical survey, the General Contractor shall fine grade the subgrade suitably, including properly rolling and compacting the subgrade. Contractor shall not approve the subgrade for tolerance to grade without obtaining a certified as-built survey.

B. Areas to be placed with turf will be compacted and brought approximately to subgrade elevation under Section 31 20 00 – Earth Moving, and Section 31 23 00 – Excavation and Fill, before work of this section is performed. Final fine grading, filling, and compaction of subgrade to receive turf, as required to form a firm, uniform, and accurate subgrade at required elevations and to required lines, shall be done under this Section.

C. Subgrade of areas to be surfaced with synthetic turf shall be re-compacted as required to bring top 9 inches of material immediately below Free Draining Base Stone layer to a compaction of at least 98 percent of maximum density, as determined by ASTM D 698.

D. Excavation required in stone subgrade shall be completed before fine grading and final compaction of subgrade are performed. Where excavation must be performed in completed subgrade, subsequent backfill and compaction shall be performed as specified in Section 31 20 00 - Earth Moving, and Section 31 23 00 – Excavation and Fill. Completed subgrade after filling such areas shall be uniformly and properly graded.

E. Areas being graded or compacted shall be kept shaped and drained during construction. Ruts greater than or equal to 2 in. deep in subgrade, shall be graded out, reshaped as required, and re-compacted before placing stone base course.

F. Materials shall not be stored or stockpiled on subgrade

G. Prepared subgrade will be inspected by the Turf Manufacturer's/Installer's representative. Subgrade shall be approved by the Engineer before installation of Geotextile Fabric, Drainage Pipe, and Free Draining Base Stone layer. Disturbance to subgrade caused by inspection procedures shall be repaired under this Section of the specification.

3.2 FREE DRAINING CRUSHED STONE INSTALLATION

A. Install Geotextile Fabric over the prepared subgrade and the bottom and sides of the excavated drainage system trenches in accordance with Manufacturer's recommendations. Provide 2 feet minimum overlap at all seams.

B. Install drainage pipe and backfill in accordance with Section 33 41 00 - Storm Drainage.

C. Free Draining Crushed Stone must be laid without damaging the prepared subgrade, geotextile fabric, or drainage membranes. It is very important to not create any depressions in the subgrade with heavy equipment. The Free Draining Crushed Stone supplied must be stable and sufficiently permeable to ensure all-weather availability to the field.

D. Free Draining Crushed Stone shall not be installed over muddy or frozen subgrade.
E. Free Draining Crushed Stone shall be installed and consolidated in lifts less than or equal to 4 inches. Each lift shall be separately rolled and compacted using a 6-ton steel wheel roller or vibratory roller equivalent to a 6-ton static roller, or an approved equivalent.

1. Material shall be placed adjacent to structures only after they have been set to required grade and level.
2. Rolling shall begin at sides and progress to center of crowned areas, and shall begin on low side and progress toward high side of sloped areas.
3. Free Draining Crushed Stone surface irregularities which exceed 1/4 inches measured by means of a 10ft. long straightedge in all directions shall be replaced and properly compacted.

F. Free Draining Crushed Stone layer shall be kept clean and uncontaminated. less select materials shall not be permitted to become mixed with gravel. Materials spilled shall not be permitted to become mixed with gravel. Materials spilled outside specified lines shall be removed and areas repaired.

3.3 FREE DRAINING CHOKER STONE INSTALLATION

A. Free Draining Choker Stone layer shall be installed at 1/2-inch lifts as needed to prevent rutting of the Free Draining Crushed Stone layer. Free Draining Choker Stone shall be installed to required depth shown on Contract Drawings.

B. Free Draining Choker Stone shall be consolidated, rolled and compacted in both directions. Rolling shall begin at sides and progress to center of crowned areas, and shall begin on low side and progress toward high side of sloped areas. Rolling shall continue until material does not creep or wave ahead of roller wheels.

C. Free Draining Choker Stone surface irregularities which exceed 1/4 inches measured by means of a 10ft. long straightedge in all directions from the specified grades in the Contract Drawings shall be replaced and properly compacted.

D. Free Draining Choker Stone layer shall be kept clean and uncontaminated. less select materials shall not be permitted to become mixed with gravel. Materials spilled shall not be permitted to become mixed with gravel. Materials spilled outside specified lines shall be removed and areas repaired.

3.4 FREE DRAINING FINISHING STONE INSTALLATION

A. Free Draining Finishing Stone layer shall be installed at 1/2-inch lifts as needed to prevent rutting of the Free Draining Crushed Stone layer. Free Draining Finishing Stone shall be installed to required depth shown on Contract Drawings.

B. Free Draining Finishing Stone shall be consolidated, rolled and compacted in both directions. Rolling shall begin at sides and progress to center of crowned areas, and shall begin on low side and progress toward high side of sloped areas. Rolling shall continue until material does not creep or wave ahead of roller wheels.

C. Free Draining Finishing Stone surface irregularities which exceed 1/8 inches measured by means of a 10ft. long straightedge in all directions from the specified grades in the Contract Drawings shall be replaced and properly compacted.
D. The Free Draining Finishing Stone layer shall be inspected by the General Contractor by means of a laser level on a 25-foot grid pattern. Based on the inspection, a topographical survey shall be submitted to the Owner for verification, and the General Contractor shall fine grade the Free Draining Finishing Stone layer suitably, including proper rolling and compaction to achieve a tolerance of 1/8 inch in 10 feet.

E. Testing of the stones infiltration rate shall be performed by the Owner's Geotechnical Engineer using a Dual-Ring Infiltrometer or an equivalent percolation test to affirm the subsurface drainage system's water permeability rates once the Free Draining Finishing Stone layer is completed. Testing shall be done at a minimum of three locations of which shall be selected by the Owner and/or Designer. If the test areas do not meet or exceed the required 16 inches per hour, additional tests may be required.

F. The General Contractor shall verify that the subsurface drainage system is functioning properly prior to the commencement of the Infilled Synthetic Turf System installation by thoroughly flooding the field in a minimum of three areas and verifying and recording flow from the drainage system outlet. This can also be accomplished by recording a naturally occurring rain event with greater than 1/2-inch of rainfall. This activity should be observed by the Owner's Representative.

3.5 FREE DRAINING STONE VERIFICATION

A. The General Contractor shall verify that the subsurface drainage system is functioning properly prior to commencement of the Infilled Synthetic Turf System Installation. Provide verification to the Owner and Designer. Infilled Synthetic Turf Manufacturer/Installer to provide written verification that he has examined the system and that the Free Draining Stone and subsurface drainage system are functioning properly. Commencement of work prior to written verification constitutes acknowledgement that the systems are functioning properly.

3.6 INFILLED SYNTHETIC TURF FIELD INSTALLATION

A. Upon final written certification from the General Contractor and Infilled Synthetic Turf Manufacturer/Installer that the Free Draining Stone and drainage system has been properly installed and testing has been completed by the contractor and monitored by the Owner's Representative, the Infilled Synthetic Turf Installation shall commence. Prior to beginning work, the Infilled Synthetic Turf Manufacturer/Installer shall verify in writing that he accepts the base including the grades of the Finishing Stone by the General Contractor.

B. Installation Limitations

1. Installation shall not proceed when:

 a) Ambient air temperature is below 40 °F.
 b) Material temperature is below 40 °F.
 c) Rain is falling or pending, unless acceptable to qualified installers.
 d) Conditions exist, or are pending, that will be unsuitable for the installation of the system.
C. Tufted Synthetic Turf rolls shall be installed perpendicularly to center axis of the field. Turf rolls shall be of sufficient length to permit full cross-field installation from sideline to sideline. No head or cross seams will be allowed. Once all playing surface rolls have been installed, attach per manufacturer’s specifications at a maximum of 12-inch intervals directly to the turf anchor.

D. Tufted Synthetic Turf shall be installed with no wrinkles, ripples or bubbles. Shearing of fibers, slits in fabric, or driven spikes to relieve such defects will not be permitted.

E. All Tufted Synthetic Turf seams shall be sewn with a double-locked stitch. Glued seams may be permitted following review of gluing methods and materials and weather conditions by the Designer. Glued seams shall be backed with seam tape. Seams shall be flat, tight, and permanent with no separation or fraying. Tufted yarn pile that is trapped or glued between seams shall be freed from the seams by hand or other approved methods to an upright position to brushing and infilling.

F. All tufted synthetic turf inlays and other field markings shall be adhered with high strength tape and glue as stated above. Inlay seams shall be flat, tight, and permanent with no separation or fraying. Tufted Synthetic Turf yarn pile that is trapped or glued between inlay shall be freed from the seams by hand or other approved methods to an upright position to brushing and infilling.

G. Upon completion of seaming and inlaying and prior to infilling, the entire field shall be brushed with a motorized rotary nylon broom to free trapped or tangled fibers.

H. The silica sand and cryogenic rubber infill shall be installed by the Infilled Synthetic Turf Manufacturer's approved infill procedures to the specified heights and ratio of sand to rubber by weight.

I. Upon completion, the Infilled Synthetic Turf Manufacturer/Installer shall provide the Owner with independent testing data stating that the finished field falls within the required minimum and maximum G-Max ratings as provided in this Section. The average G-Max value at installation shall be between 110 and 140. The Infilled Synthetic Turf Installer, prior to acceptance, shall remedy an average G-Max outside this range, or individual reading more than 15 percent outside this range. Satisfactory G-Max testing shall be a fixed requirement for final acceptance of the Infilled Synthetic Turf Installation.

J. All usable remnants of new synthetic turf materials shall become the property of the Owner. A minimum of 1,000 square feet of tufted synthetic turf shall be provided including at least one 15 foot by 15 foot section.

3.7 FIELD LAYOUTS

A. Stadium Field

 1. Football:

 a) Field shall be marked in accordance with the National Federation of State High School Association, Contract Drawings, and approved shop drawings signed by the Designer and Owner.

 b) Field Lines shall be white.
2. Soccer:
 a) Field shall be marked in accordance with the National Federation of State High School Association, Contract Drawings, and approved shop drawings signed by the Designer and Owner.
 b) Field Lines shall be yellow.

3. Lacrosse:
 a) 4 by 4 inches blue reference tick marks shall be installed for the layout of a NFHS Boy's Lacrosse field at the corners. Dimensions of corners shall be in accordance with NFHS, Contract Drawings, and approved shop drawings signed by the Designer and Owner.

3.8 PROTECTION

 A. Infilled Synthetic Turf Installer shall advise the General Contractor of procedures required for protection and maintenance of finished synthetic fieldsurfacing during remainder of construction period so that surfacing will be undamaged at time of acceptance.

 B. Upon completion of the synthetic field surface, the General Contractor shall be responsible for protection of the field surface for the remainder of the Contract.

END OF SECTION 32 18 23.19
JOINT BOARD OF SUPERVISORS and
SCHOOL BOARD COMMITTEE
INFORMATION ITEM

SUBJECT: Joint Board of Supervisors and School Board Committee 2016 Goals Discussion

ELECTION DISTRICTS: Countywide

CRITICAL ACTION DATE: At the pleasure of the Committee

STAFF CONTACT: Robert Middaugh, Assistant County Administrator

PURPOSE: To set the Joint Committee’s goals for 2016.

BACKGROUND: This item has been placed on the Joint Committee agenda to provide an opportunity for the Committee members to discuss goals or subjects that may be of interest for the Committee to discuss in future meetings.

A number of potential topics were identified at the joint School Board and Board of Supervisors budget meeting held on March 2, 2016. Several of these topics are on the March 18, 2016 Joint Committee agenda and include an update of the Academy of Sciences, synthetic turf fields with a focus on the safety of crumb rubber use and possible alternatives to crumb rubber and the FY 2017 budget.

Issues also raised at the March 2, 2016 budget meeting included what kind and how information is shared between the two Boards, with specific mention of school enrollment projections and sharing information on rezoning and areas where the entities might cooperate to achieve efficiencies. Each of these can be much broader topics that the Committee might choose to explore further.

If the Committee can identify some broad themes or areas of interest, School and County staff will work together to refine or expand for subsequent Committee discussion.
JOINT BOARD OF SUPERVISORS and
SCHOOL BOARD COMMITTEE
INFORMATION ITEM

SUBJECT: 2016 Joint Board of Supervisors and School Board Committee Schedule

ELECTION DISTRICTS: Countywide

CRITICAL ACTION DATE: At the pleasure of the Committee

STAFF CONTACT: Robert Middaugh, Assistant County Administrator

PURPOSE: To confirm the 2016 meeting schedule for the Committee.

BACKGROUND: The Joint Board of Supervisors and School Board Committee will discuss and adopt a meeting schedule for the remaining 2016 calendar year. County and School staff have compiled a list of possible meeting dates should the Committee decide to continue its meetings quarterly on Fridays at 4:00pm.

DRAFT MOTIONS:

1. I move that the Joint Board of Supervisors and School Board Committee meet quarterly in 2016, at 4:00pm, on the following dates ___________________________ or as determined by agreement of the co-chairs of the Joint Board of Supervisors and School Board Committee.

 OR

2. I move that the Joint Board of Supervisors and School Board Committee meet (Monthly Quarterly) on the (First/Second/Third/Fourth) day of the month during 2016; or as determined by agreement of the co-chairs of the Joint Board of Supervisors and School Board Committee.

 OR

3. I move an alternate motion.